


JAVA
T M

PROGRAMMING





JAVA
T M

PROGRAMMING

JOYCE FARRELL

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

E I G H T H E D I T I O N



This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial 
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to 

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.



Java Programming,
Eighth Edition
Joyce Farrell

Product Director:
Kathleen McMahon

Senior Content Developer:
Alyssa Pratt

Development Editor: Dan Seiter

Marketing Manager: Eric LaScola

Manufacturing Planner:
Julio Esperas

Art Director: Jack Pendleton

Production Management,
Copyediting, Composition,
Proofreading, and Indexing:
Integra Software Services Pvt. Ltd.

Cover Photo:
©Maram/Shutterstock.com

© 2016, 2014, 2012 Cengage Learning

WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and
retrieval systems, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to

permissionrequest@cengage.com.

Library of Congress Control Number: 2014956152

ISBN: 978-1-285-85691-9

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning
solutions with office locations around the globe, including Singapore,
the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your
local office at www.cengage.com/global.

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

All images © 2016 Cengage Learning®. All rights reserved.

To learn more about Cengage Learning Solutions, visit
www.cengage.com.

Purchase any of our products at your local college store
or at our preferred online store www.cengagebrain.com.

Printed in the United States of America
Print Number: 01 Print Year: 2015



Brief Contents

Preface . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTER 1 Creat ing Java Programs . . . . . . . . . . . . . . . . 1

CHAPTER 2 Using Data . . . . . . . . . . . . . . . . . . . . . 53

CHAPTER 3 Using Methods, Classes, and Objects . . . . . . . 119

CHAPTER 4 More Object Concepts . . . . . . . . . . . . . . . 183

CHAPTER 5 Making Decis ions . . . . . . . . . . . . . . . . . 245

CHAPTER 6 Looping . . . . . . . . . . . . . . . . . . . . . 301

CHAPTER 7 Characters, Strings, and the StringBuilder . . . 353

CHAPTER 8 Arrays . . . . . . . . . . . . . . . . . . . . . . 393

CHAPTER 9 Advanced Array Concepts . . . . . . . . . . . . . 439

CHAPTER 10 Introduct ion to Inheritance . . . . . . . . . . . . . 491

CHAPTER 11 Advanced Inheri tance Concepts . . . . . . . . . . 537

CHAPTER 12 Except ion Handl ing . . . . . . . . . . . . . . . . 593

CHAPTER 13 Fi le Input and Output . . . . . . . . . . . . . . . 665

CHAPTER 14 Introduct ion to Swing Components . . . . . . . . 729

CHAPTER 15 Advanced GUI Topics . . . . . . . . . . . . . . . 791

CHAPTER 16 Graphics . . . . . . . . . . . . . . . . . . . . . 861

APPENDIX A Working with the Java Platform . . . . . . . . . . . 919

APPENDIX B Data Representat ion . . . . . . . . . . . . . . . 925

APPENDIX C Formatt ing Output . . . . . . . . . . . . . . . . 931

APPENDIX D Generat ing Random Numbers . . . . . . . . . . . 941

APPENDIX E Javadoc . . . . . . . . . . . . . . . . . . . . . 949

Glossary . . . . . . . . . . . . . . . . . . . . 957

Index . . . . . . . . . . . . . . . . . . . . . . 979

v



Contents

Preface . . . . . . . . . . . . . . . . . . xxi

CHAPTER 1 Creating Java Programs . . . . . . . . . . . 1

Learning Programming Terminology . . . . . . . . . . . . . . 2
Comparing Procedural and Object-Oriented

Programming Concepts . . . . . . . . . . . . . . . . . . 6
Procedural Programming . . . . . . . . . . . . . . . . . . 6
Object-Oriented Programming . . . . . . . . . . . . . . . . 6
Understanding Classes, Objects, and Encapsulation . . . . . . 7
Understanding Inheritance and Polymorphism . . . . . . . . . 9

Features of the Java Programming Language . . . . . . . . . . 11
Java Program Types . . . . . . . . . . . . . . . . . . . . 12

Analyzing a Java Application that Produces Console Output . . . . 13
Understanding the Statement that Produces the Output . . . . . 14
Understanding the First Class . . . . . . . . . . . . . . . 15
Indent Style . . . . . . . . . . . . . . . . . . . . . . . 18
Understanding the main() Method . . . . . . . . . . . . . 19
Saving a Java Class . . . . . . . . . . . . . . . . . . . . 21

Compiling a Java Class and Correcting Syntax Errors . . . . . . . 23
Compiling a Java Class . . . . . . . . . . . . . . . . . . . 23
Correcting Syntax Errors . . . . . . . . . . . . . . . . . . 24

Running a Java Application and Correcting Logic Errors . . . . . . 29
Running a Java Application . . . . . . . . . . . . . . . . . 29
Modifying a Compiled Java Class . . . . . . . . . . . . . . 30
Correcting Logic Errors . . . . . . . . . . . . . . . . . . 31

Adding Comments to a Java Class . . . . . . . . . . . . . . . 32
Creating a Java Application that Produces GUI Output . . . . . . 35
Finding Help . . . . . . . . . . . . . . . . . . . . . . . . 38
Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . . 39
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 45
Review Questions . . . . . . . . . . . . . . . . . . . . . . 46
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 48

Programming Exercises . . . . . . . . . . . . . . . . . . 48
Debugging Exercises . . . . . . . . . . . . . . . . . . . 50
Game Zone . . . . . . . . . . . . . . . . . . . . . . . . 50
Case Problems . . . . . . . . . . . . . . . . . . . . . . 51

CHAPTER 2 Using Data . . . . . . . . . . . . . . . . . 53

Declaring and Using Constants and Variables . . . . . . . . . . 54
Declaring Variables . . . . . . . . . . . . . . . . . . . . 55
Declaring Named Constants . . . . . . . . . . . . . . . . 56
The Scope of Variables and Constants . . . . . . . . . . . . 58
Concatenating Strings to Variables and Constants . . . . . . . 58
Pitfall: Forgetting that a Variable Holds

One Value at a Time . . . . . . . . . . . . . . . . . . . 60
Learning About Integer Data Types . . . . . . . . . . . . . . 64
Using the boolean Data Type . . . . . . . . . . . . . . . . . 70
Learning About Floating-Point Data Types . . . . . . . . . . . . 71
Using the char Data Type . . . . . . . . . . . . . . . . . . 72
Using the Scanner Class to Accept Keyboard Input . . . . . . . 78

Pitfall: Using nextLine() Following One of the
Other Scanner Input Methods . . . . . . . . . . . . . . 81

Using the JOptionPane Class to Accept GUI Input . . . . . . . 87
Using Input Dialog Boxes . . . . . . . . . . . . . . . . . . 87
Using Confirm Dialog Boxes . . . . . . . . . . . . . . . . 91

Performing Arithmetic . . . . . . . . . . . . . . . . . . . . 93
Associativity and Precedence . . . . . . . . . . . . . . . . 95
Writing Arithmetic Statements Efficiently . . . . . . . . . . . 96
Pitfall: Not Understanding Imprecision

in Floating-Point Numbers . . . . . . . . . . . . . . . . 96
Understanding Type Conversion . . . . . . . . . . . . . . . 101

Automatic Type Conversion . . . . . . . . . . . . . . . . 101
Explicit Type Conversions . . . . . . . . . . . . . . . . 102

Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 106
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



Chapter Summary . . . . . . . . . . . . . . . . . . . . . 111
Review Questions . . . . . . . . . . . . . . . . . . . . . 111
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 114

Programming Exercises . . . . . . . . . . . . . . . . . 114
Debugging Exercises . . . . . . . . . . . . . . . . . . 116
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 117
Case Problems . . . . . . . . . . . . . . . . . . . . . 118

CHAPTER 3 Using Methods, Classes, and Objects . . . . 119

Understanding Method Calls and Placement . . . . . . . . . . 120
Understanding Method Construction . . . . . . . . . . . . . 123

Access Specifiers . . . . . . . . . . . . . . . . . . . . 123
Return Type . . . . . . . . . . . . . . . . . . . . . . 124
Method Name . . . . . . . . . . . . . . . . . . . . . 125
Parentheses . . . . . . . . . . . . . . . . . . . . . . 125

Adding Parameters to Methods . . . . . . . . . . . . . . . 129
Creating a Method that Receives a Single Parameter . . . . . 130
Creating a Method that Requires Multiple Parameters . . . . . 133

Creating Methods that Return Values . . . . . . . . . . . . . 136
Chaining Method Calls . . . . . . . . . . . . . . . . . . 138

Learning About Classes and Objects . . . . . . . . . . . . . 142
Creating a Class . . . . . . . . . . . . . . . . . . . . . 145
Creating Instance Methods in a Class . . . . . . . . . . . . 147

Organizing Classes . . . . . . . . . . . . . . . . . . . 150
Declaring Objects and Using their Methods . . . . . . . . . . 154

Understanding Data Hiding . . . . . . . . . . . . . . . . 156
An Introduction to Using Constructors . . . . . . . . . . . . 159
Understanding that Classes Are Data Types . . . . . . . . . . 163
Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 168
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 168
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 170
Review Questions . . . . . . . . . . . . . . . . . . . . . 171
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 174

Programming Exercises . . . . . . . . . . . . . . . . . 174
Debugging Exercises . . . . . . . . . . . . . . . . . . 177
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 178
Case Problems . . . . . . . . . . . . . . . . . . . . . 179

viii

C O N T E N T S



CHAPTER 4 More Object Concepts . . . . . . . . . . . 183

Understanding Blocks and Scope . . . . . . . . . . . . . . 184
Overloading a Method . . . . . . . . . . . . . . . . . . . 192

Automatic Type Promotion in Method Calls . . . . . . . . . 194
Learning About Ambiguity . . . . . . . . . . . . . . . . . 199
Creating and Calling Constructors with Parameters . . . . . . . 200

Overloading Constructors . . . . . . . . . . . . . . . . 201
Learning About the this Reference . . . . . . . . . . . . . 205

Using the this Reference to Make Overloaded Constructors
More Efficient . . . . . . . . . . . . . . . . . . . . . 209

Using static Fields . . . . . . . . . . . . . . . . . . . 213
Using Constant Fields . . . . . . . . . . . . . . . . . . 215

Using Automatically Imported, Prewritten Constants
and Methods . . . . . . . . . . . . . . . . . . . . . . 220
The Math Class . . . . . . . . . . . . . . . . . . . . 221
Importing Classes that Are Not Imported Automatically . . . . 223
Using the LocalDate Class . . . . . . . . . . . . . . . 224

Understanding Composition and Nested Classes . . . . . . . . 230
Composition . . . . . . . . . . . . . . . . . . . . . . 230
Nested Classes . . . . . . . . . . . . . . . . . . . . . 232

Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 234
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 234
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 236
Review Questions . . . . . . . . . . . . . . . . . . . . . 236
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 239

Programming Exercises . . . . . . . . . . . . . . . . . 239
Debugging Exercises . . . . . . . . . . . . . . . . . . 242
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 242
Case Problems . . . . . . . . . . . . . . . . . . . . . 243

CHAPTER 5 Making Decisions . . . . . . . . . . . . . 245

Planning Decision-Making Logic . . . . . . . . . . . . . . . 246
The if and if…else Statements . . . . . . . . . . . . . . 248

The if Statement . . . . . . . . . . . . . . . . . . . . 248
Pitfall: Misplacing a Semicolon in an if Statement . . . . . . 249
Pitfall: Using the Assignment Operator Instead

of the Equivalency Operator . . . . . . . . . . . . . . 250

ix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Pitfall: Attempting to Compare Objects
Using the Relational Operators . . . . . . . . . . . . . 251

The if…else Statement . . . . . . . . . . . . . . . . . 251
Using Multiple Statements in if and if…else Clauses . . . . 254
Nesting if and if…else Statements . . . . . . . . . . . . 260
Using Logical AND and OR Operators . . . . . . . . . . . . 263

The AND Operator . . . . . . . . . . . . . . . . . . . . 263
The OR Operator . . . . . . . . . . . . . . . . . . . . 265
Short-Circuit Evaluation . . . . . . . . . . . . . . . . . . 266

Making Accurate and Efficient Decisions . . . . . . . . . . . 269
Making Accurate Range Checks . . . . . . . . . . . . . . 270
Making Efficient Range Checks . . . . . . . . . . . . . . 272
Using && and || Appropriately . . . . . . . . . . . . . . 273

Using the switch Statement . . . . . . . . . . . . . . . . 274
Using the Conditional and NOT Operators . . . . . . . . . . . 280

Using the NOT Operator . . . . . . . . . . . . . . . . . 281
Understanding Operator Precedence . . . . . . . . . . . . . 282
Adding Decisions and Constructors

to Instance Methods . . . . . . . . . . . . . . . . . . . 285
Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 289
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 289
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 291
Review Questions . . . . . . . . . . . . . . . . . . . . . 291
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 294

Programming Exercises . . . . . . . . . . . . . . . . . 294
Debugging Exercises . . . . . . . . . . . . . . . . . . 297
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 297
Case Problems . . . . . . . . . . . . . . . . . . . . . 299

CHAPTER 6 Looping . . . . . . . . . . . . . . . . . 301

Learning About the Loop Structure . . . . . . . . . . . . . . 302
Creating while Loops . . . . . . . . . . . . . . . . . . 303

Writing a Definite while Loop . . . . . . . . . . . . . . 303
Pitfall: Failing to Alter the Loop Control Variable

Within the Loop Body . . . . . . . . . . . . . . . . . 305
Pitfall: Unintentionally Creating a Loop with

an Empty Body . . . . . . . . . . . . . . . . . . . . 306

x

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Altering a Definite Loop’s Control Variable . . . . . . . . . . 307
Writing an Indefinite while Loop . . . . . . . . . . . . . 308
Validating Data . . . . . . . . . . . . . . . . . . . . . 310

Using Shortcut Arithmetic Operators . . . . . . . . . . . . . 314
Creating a for Loop . . . . . . . . . . . . . . . . . . . 319

Unconventional for Loops . . . . . . . . . . . . . . . . 320
Learning How and When to Use a do…while Loop . . . . . . 325
Learning About Nested Loops . . . . . . . . . . . . . . . . 328
Improving Loop Performance . . . . . . . . . . . . . . . . 333

Avoiding Unnecessary Operations . . . . . . . . . . . . . 333
Considering the Order of Evaluation of Short-Circuit

Operators . . . . . . . . . . . . . . . . . . . . . . 334
Comparing to Zero . . . . . . . . . . . . . . . . . . . 334
Employing Loop Fusion . . . . . . . . . . . . . . . . . . 336
Using Prefix Incrementing Rather than Postfix

Incrementing . . . . . . . . . . . . . . . . . . . . . 337
A Final Note on Improving Loop Performance . . . . . . . . 338

Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 342
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 342
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 344
Review Questions . . . . . . . . . . . . . . . . . . . . . 344
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 347

Programming Exercises . . . . . . . . . . . . . . . . . 347
Debugging Exercises . . . . . . . . . . . . . . . . . . 350
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 350
Case Problems . . . . . . . . . . . . . . . . . . . . . 352

CHAPTER 7 Characters, Strings, and
the StringBuilder . . . . . . . . . . . . 353

Understanding String Data Problems . . . . . . . . . . . . . 354
Using Character Class Methods . . . . . . . . . . . . . . 355
Declaring and Comparing String Objects . . . . . . . . . . 359

Comparing String Values . . . . . . . . . . . . . . . . 359
Empty and null Strings . . . . . . . . . . . . . . . . . 363

Using Other String Methods . . . . . . . . . . . . . . . 365
Converting String Objects to Numbers . . . . . . . . . . 369

xi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Learning About the StringBuilder
and StringBuffer Classes . . . . . . . . . . . . . . 374

Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 381
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 382
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 382
Review Questions . . . . . . . . . . . . . . . . . . . . . 383
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 385

Programming Exercises . . . . . . . . . . . . . . . . . 385
Debugging Exercises . . . . . . . . . . . . . . . . . . 388
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 388
Case Problems . . . . . . . . . . . . . . . . . . . . . 391

CHAPTER 8 Arrays . . . . . . . . . . . . . . . . . . 393

Declaring Arrays . . . . . . . . . . . . . . . . . . . . . 394
Initializing an Array . . . . . . . . . . . . . . . . . . . . 399
Using Variable Subscripts with an Array . . . . . . . . . . . . 402

Using the Enhanced for Loop . . . . . . . . . . . . . . 403
Using Part of an Array . . . . . . . . . . . . . . . . . . 404

Declaring and Using Arrays of Objects . . . . . . . . . . . . 406
Using the Enhanced for Loop with Objects . . . . . . . . . 408
Manipulating Arrays of Strings . . . . . . . . . . . . . 408

Searching an Array and Using Parallel Arrays . . . . . . . . . 414
Using Parallel Arrays . . . . . . . . . . . . . . . . . . . 415
Searching an Array for a Range Match . . . . . . . . . . . 418

Passing Arrays to and Returning Arrays from Methods . . . . . 422
Returning an Array from a Method . . . . . . . . . . . . . 426

Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 428
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 428
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 429
Review Questions . . . . . . . . . . . . . . . . . . . . . 430
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 433

Programming Exercises . . . . . . . . . . . . . . . . . 433
Debugging Exercises . . . . . . . . . . . . . . . . . . 435
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 435
Case Problems . . . . . . . . . . . . . . . . . . . . . 438

xii

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 9 Advanced Array Concepts . . . . . . . . . 439

Sorting Array Elements Using the Bubble Sort Algorithm . . . . 440
Using the Bubble Sort Algorithm . . . . . . . . . . . . . . 440
Improving Bubble Sort Efficiency . . . . . . . . . . . . . 442
Sorting Arrays of Objects . . . . . . . . . . . . . . . . . 443

Sorting Array Elements Using the Insertion Sort Algorithm . . . . 448
Using Two-Dimensional and Other Multidimensional Arrays . . . . 452

Passing a Two-Dimensional Array to a Method . . . . . . . . 454
Using the length Field with a Two-Dimensional Array . . . . 455
Understanding Ragged Arrays . . . . . . . . . . . . . . . 456
Using Other Multidimensional Arrays . . . . . . . . . . . . 456

Using the Arrays Class . . . . . . . . . . . . . . . . . . 459
Using the ArrayList Class . . . . . . . . . . . . . . . . 467
Creating Enumerations . . . . . . . . . . . . . . . . . . . 472
Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 479
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 479
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 480
Review Questions . . . . . . . . . . . . . . . . . . . . . 481
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 484

Programming Exercises . . . . . . . . . . . . . . . . . 484
Debugging Exercises . . . . . . . . . . . . . . . . . . 486
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 487
Case Problems . . . . . . . . . . . . . . . . . . . . . 490

CHAPTER 10 Introduction to Inheritance . . . . . . . . . 491

Learning About the Concept of Inheritance . . . . . . . . . . 492
Diagramming Inheritance Using the UML . . . . . . . . . . 492
Inheritance Terminology . . . . . . . . . . . . . . . . . 495

Extending Classes . . . . . . . . . . . . . . . . . . . . . 496
Overriding Superclass Methods . . . . . . . . . . . . . . . 502

Using the @Override Tag . . . . . . . . . . . . . . . . 504
Calling Constructors During Inheritance . . . . . . . . . . . . 507

Using Superclass Constructors that
Require Arguments . . . . . . . . . . . . . . . . . . 508

Accessing Superclass Methods . . . . . . . . . . . . . . . 513
Comparing this and super . . . . . . . . . . . . . . . 515

Employing Information Hiding . . . . . . . . . . . . . . . . 516

xiii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Methods You Cannot Override . . . . . . . . . . . . . . . . 518
A Subclass Cannot Override static Methods in

Its Superclass . . . . . . . . . . . . . . . . . . . . 518
A Subclass Cannot Override final Methods in

Its Superclass . . . . . . . . . . . . . . . . . . . . 522
A Subclass Cannot Override Methods

in a final Superclass . . . . . . . . . . . . . . . . 523
Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 525
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 525
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 526
Review Questions . . . . . . . . . . . . . . . . . . . . . 527
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 530

Programming Exercises . . . . . . . . . . . . . . . . . 530
Debugging Exercises . . . . . . . . . . . . . . . . . . 533
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 534
Case Problems . . . . . . . . . . . . . . . . . . . . . 535

CHAPTER 11 Advanced Inheritance Concepts . . . . . . . 537

Creating and Using Abstract Classes . . . . . . . . . . . . . 538
Using Dynamic Method Binding . . . . . . . . . . . . . . . 547

Using a Superclass as a Method Parameter Type . . . . . . 549
Creating Arrays of Subclass Objects . . . . . . . . . . . . . 551
Using the Object Class and Its Methods . . . . . . . . . . . 554

Using the toString() Method . . . . . . . . . . . . . 556
Using the equals() Method . . . . . . . . . . . . . . . 559

Using Inheritance to Achieve Good Software Design . . . . . . 564
Creating and Using Interfaces . . . . . . . . . . . . . . . . 565

Creating Interfaces to Store Related Constants . . . . . . . 570
Creating and Using Packages . . . . . . . . . . . . . . . . 574
Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 580
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 580
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 581
Review Questions . . . . . . . . . . . . . . . . . . . . . 582
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 585

Programming Exercises . . . . . . . . . . . . . . . . . 585
Debugging Exercises . . . . . . . . . . . . . . . . . . 589
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 590
Case Problems . . . . . . . . . . . . . . . . . . . . . 590

xiv

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 12 Exception Handling . . . . . . . . . . . . 593

Learning About Exceptions . . . . . . . . . . . . . . . . . 594
Trying Code and Catching Exceptions . . . . . . . . . . . . 599

Using a try Block to Make Programs “Foolproof” . . . . . . 604
Declaring and Initializing Variables in try…catch Blocks . . . 606

Throwing and Catching Multiple Exceptions . . . . . . . . . . 609
Using the finally Block . . . . . . . . . . . . . . . . . 615
Understanding the Advantages of Exception Handling . . . . . . 618
Specifying the Exceptions that a Method Can Throw . . . . . . 621
Tracing Exceptions Through the Call Stack . . . . . . . . . . 626
Creating Your Own Exception Classes . . . . . . . . . . . 630
Using Assertions . . . . . . . . . . . . . . . . . . . . . 634
Displaying the Virtual Keyboard . . . . . . . . . . . . . . . 650
Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 653
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 654
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 655
Review Questions . . . . . . . . . . . . . . . . . . . . . 656
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 659

Programming Exercises . . . . . . . . . . . . . . . . . 659
Debugging Exercises . . . . . . . . . . . . . . . . . . 662
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 662
Case Problems . . . . . . . . . . . . . . . . . . . . . 663

CHAPTER 13 File Input and Output . . . . . . . . . . . . 665

Understanding Computer Files . . . . . . . . . . . . . . . 666
Using the Path and Files Classes . . . . . . . . . . . . . 667

Creating a Path . . . . . . . . . . . . . . . . . . . . . 668
Retrieving Information About a Path . . . . . . . . . . . . 669
Converting a Relative Path to an Absolute One . . . . . . . . 670
Checking File Accessibility . . . . . . . . . . . . . . . . 671
Deleting a Path . . . . . . . . . . . . . . . . . . . . . 673
Determining File Attributes . . . . . . . . . . . . . . . . 674

File Organization, Streams, and Buffers . . . . . . . . . . . . 678
Using Java’s IO Classes . . . . . . . . . . . . . . . . . . 680

Writing to a File . . . . . . . . . . . . . . . . . . . . . 683
Reading from a File . . . . . . . . . . . . . . . . . . . 685

xv

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Creating and Using Sequential Data Files . . . . . . . . . . . 687
Learning About Random Access Files . . . . . . . . . . . . 693
Writing Records to a Random Access Data File . . . . . . . . 697
Reading Records from a Random Access Data File . . . . . . . 704

Accessing a Random Access File Sequentially . . . . . . . . 704
Accessing a Random Access File Randomly . . . . . . . . . 705

Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 719
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 719
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 720
Review Questions . . . . . . . . . . . . . . . . . . . . . 721
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 724

Programming Exercises . . . . . . . . . . . . . . . . . 724
Debugging Exercises . . . . . . . . . . . . . . . . . . 726
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 727
Case Problems . . . . . . . . . . . . . . . . . . . . . 727

CHAPTER 14 Introduction to Swing Components . . . . . 729

Understanding Swing Components . . . . . . . . . . . . . 730
Using the JFrame Class . . . . . . . . . . . . . . . . . . 731

Customizing a JFrame’s Appearance . . . . . . . . . . . 734
Using the JLabel Class . . . . . . . . . . . . . . . . . . 738

Changing a JLabel’s Font . . . . . . . . . . . . . . . . 740
Using a Layout Manager . . . . . . . . . . . . . . . . . . 743
Extending the JFrame Class . . . . . . . . . . . . . . . . 746
Adding JTextFields, JButtons, and Tool Tips to a
JFrame . . . . . . . . . . . . . . . . . . . . . . . . 748
Adding JTextFields . . . . . . . . . . . . . . . . . . 748
Adding JButtons . . . . . . . . . . . . . . . . . . . 750
Using Tool Tips . . . . . . . . . . . . . . . . . . . . . 752

Learning About Event-Driven Programming . . . . . . . . . . 755
Preparing Your Class to Accept Event Messages . . . . . . . 756
Telling Your Class to Expect Events to Happen . . . . . . . 757
Telling Your Class How to Respond to Events . . . . . . . . 757
An Event-Driven Program . . . . . . . . . . . . . . . . . 757
Using Multiple Event Sources . . . . . . . . . . . . . . . 759
Using the setEnabled() Method . . . . . . . . . . . . 761

Understanding Swing Event Listeners . . . . . . . . . . . . 764

xvi

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the JCheckBox, ButtonGroup, and JComboBox
Classes . . . . . . . . . . . . . . . . . . . . . . . . 767
The JCheckBox Class . . . . . . . . . . . . . . . . . 767
The ButtonGroup Class . . . . . . . . . . . . . . . . 771
The JComboBox Class . . . . . . . . . . . . . . . . . 772

Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 780
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 780
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 781
Review Questions . . . . . . . . . . . . . . . . . . . . . 783
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 785

Programming Exercises . . . . . . . . . . . . . . . . . 785
Debugging Exercises . . . . . . . . . . . . . . . . . . 787
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 787
Case Problems . . . . . . . . . . . . . . . . . . . . . 788

CHAPTER 15 Advanced GUI Topics . . . . . . . . . . . 791

Understanding the Content Pane . . . . . . . . . . . . . . 792
Using Color . . . . . . . . . . . . . . . . . . . . . . . 795
Learning More About Layout Managers . . . . . . . . . . . . 797

Using BorderLayout . . . . . . . . . . . . . . . . . 798
Using FlowLayout . . . . . . . . . . . . . . . . . . . 800
Using GridLayout . . . . . . . . . . . . . . . . . . . 802
Using CardLayout . . . . . . . . . . . . . . . . . . . 803
Using Advanced Layout Managers . . . . . . . . . . . . . 805

Using the JPanel Class . . . . . . . . . . . . . . . . . . 813
Creating JScrollPanes . . . . . . . . . . . . . . . . . 821
A Closer Look at Events and Event Handling . . . . . . . . . . 824

An Event-Handling Example: KeyListener . . . . . . . . 827
Using AWTEvent Class Methods . . . . . . . . . . . . . . 830

Understanding x- and y-Coordinates . . . . . . . . . . . . 832
Handling Mouse Events . . . . . . . . . . . . . . . . . . 832
Using Menus . . . . . . . . . . . . . . . . . . . . . . . 837

Using Specialized Menu Items . . . . . . . . . . . . . . . 841
Using addSeparator() . . . . . . . . . . . . . . . . 843
Using setMnemonic() . . . . . . . . . . . . . . . . . 843

Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 848
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 849

xvii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapter Summary . . . . . . . . . . . . . . . . . . . . . 850
Review Questions . . . . . . . . . . . . . . . . . . . . . 851
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 853

Programming Exercises . . . . . . . . . . . . . . . . . 853
Debugging Exercises . . . . . . . . . . . . . . . . . . 855
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 855
Case Problems . . . . . . . . . . . . . . . . . . . . . 859

CHAPTER 16 Graphics . . . . . . . . . . . . . . . . . 861

Learning About Rendering Methods . . . . . . . . . . . . . 862
Drawing Strings . . . . . . . . . . . . . . . . . . . . . . 865

Repainting . . . . . . . . . . . . . . . . . . . . . . . 867
Setting a Font . . . . . . . . . . . . . . . . . . . . . 869
Using Color . . . . . . . . . . . . . . . . . . . . . . 870

Drawing Lines and Shapes . . . . . . . . . . . . . . . . . 874
Drawing Lines . . . . . . . . . . . . . . . . . . . . . 874
Drawing Unfilled and Filled Rectangles . . . . . . . . . . . 875
Drawing Clear Rectangles . . . . . . . . . . . . . . . . 875
Drawing Rounded Rectangles . . . . . . . . . . . . . . . 876
Drawing Shadowed Rectangles . . . . . . . . . . . . . . 878
Drawing Ovals . . . . . . . . . . . . . . . . . . . . . 879
Drawing Arcs . . . . . . . . . . . . . . . . . . . . . . 880
Creating Polygons . . . . . . . . . . . . . . . . . . . . 881
Copying an Area . . . . . . . . . . . . . . . . . . . . 883
Using the paint() Method with JFrames . . . . . . . . . 883

Learning More About Fonts . . . . . . . . . . . . . . . . . 891
Discovering Screen Statistics . . . . . . . . . . . . . . . 893
Discovering Font Statistics . . . . . . . . . . . . . . . . 894

Drawing with Java 2D Graphics . . . . . . . . . . . . . . . 898
Specifying the Rendering Attributes . . . . . . . . . . . . 899
Setting a Drawing Stroke . . . . . . . . . . . . . . . . . 901
Creating Objects to Draw . . . . . . . . . . . . . . . . . 902

Don’t Do It . . . . . . . . . . . . . . . . . . . . . . . . 910
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 911
Chapter Summary . . . . . . . . . . . . . . . . . . . . . 911
Review Questions . . . . . . . . . . . . . . . . . . . . . 912
Exercises . . . . . . . . . . . . . . . . . . . . . . . . 915

C O N T E N T S

xviii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Exercises . . . . . . . . . . . . . . . . . 915
Debugging Exercises . . . . . . . . . . . . . . . . . . 916
Game Zone . . . . . . . . . . . . . . . . . . . . . . . 916
Case Problems . . . . . . . . . . . . . . . . . . . . . 918

APPENDIX A Working with the Java Platform . . . . . . . 919

Learning about the Java SE Development Kit . . . . . . . . . 920
Configuring Windows to Use the JDK . . . . . . . . . . . . . 920

Finding the Command Prompt . . . . . . . . . . . . . . . 921
Command Prompt Anatomy . . . . . . . . . . . . . . . . 921
Changing Directories . . . . . . . . . . . . . . . . . . 921
Setting the class and classpath Variables . . . . . . . 922
Changing a File’s Name . . . . . . . . . . . . . . . . . 922

Compiling and Executing a Java Program . . . . . . . . . . . 923
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 923

APPENDIX B Data Representation . . . . . . . . . . . . 925

Understanding Numbering Systems . . . . . . . . . . . . . 926
Representing Numeric Values . . . . . . . . . . . . . . . . 927
Representing Character Values . . . . . . . . . . . . . . . 929
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 930

APPENDIX C Formatting Output . . . . . . . . . . . . . 931

Rounding Numbers . . . . . . . . . . . . . . . . . . . . 932
Using the printf() Method . . . . . . . . . . . . . . . . 933

Specifying a Number of Decimal Places to
Display with printf() . . . . . . . . . . . . . . . . 936

Specifying a Field Size with printf() . . . . . . . . . . . 937
Using the Optional Argument Index with printf() . . . . . 938

Using the DecimalFormat Class . . . . . . . . . . . . . 939
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 940

APPENDIX D Generating Random Numbers . . . . . . . . 941

Understanding Computer-Generated Random Numbers . . . . . 942
Using the Math.random() Method . . . . . . . . . . . . . 943
Using the Random Class . . . . . . . . . . . . . . . . . . 944
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 947

xix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



APPENDIX E Javadoc . . . . . . . . . . . . . . . . . 949

The Javadoc Documentation Generator . . . . . . . . . . . . 950
Javadoc Comment Types . . . . . . . . . . . . . . . . . . 950
Generating Javadoc Documentation . . . . . . . . . . . . . 952

Specifying Visibility of Javadoc Documentation . . . . . . . . 955
Key Terms . . . . . . . . . . . . . . . . . . . . . . . . 956

Glossary . . . . . . . . . . . . . . . . . 957

Index . . . . . . . . . . . . . . . . . . . 979

xx

C O N T E N T S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface

Java Programming, Eighth Edition, provides the beginning programmer with a guide to
developing applications using the Java programming language. Java is popular among
professional programmers because it can be used to build visually interesting graphical user
interface (GUI) and Web-based applications. Java also provides an excellent environment for
the beginning programmer—a student can quickly build useful programs while learning the
basics of structured and object-oriented programming techniques.

This textbook assumes that you have little or no programming experience. It provides a solid
background in good object-oriented programming techniques and introduces terminology
using clear, familiar language. The programming examples are business examples; they do not
assume a mathematical background beyond high-school business math. In addition, the
examples illustrate only one or two major points; they do not contain so many features that
you become lost following irrelevant and extraneous details. Complete, working programs
appear frequently in each chapter; these examples help students make the transition from the
theoretical to the practical. The code presented in each chapter can also be downloaded from
the publisher’s Web site, so students can easily run the programs and experiment with
changes to them.

The student using Java Programming, Eighth Edition, builds applications from the bottom up
rather than starting with existing objects. This facilitates a deeper understanding of the
concepts used in object-oriented programming and engenders appreciation for the existing
objects students use as their knowledge of the language advances. When students complete
this book, they will know how to modify and create simple Java programs, and they will have
the tools to create more complex examples. They also will have a fundamental knowledge of
object-oriented programming, which will serve them well in advanced Java courses or in
studying other object-oriented languages such as C++, C#, and Visual Basic.

Organization and Coverage
Java Programming, Eighth Edition, presents Java programming concepts, enforcing good
style, logical thinking, and the object-oriented paradigm. Objects are covered right from the
beginning, earlier than in many other textbooks. You create your first Java program in
Chapter 1. Chapters 2, 3, and 4 increase your understanding of how data, classes, objects,
and methods interact in an object-oriented environment.

Chapters 5 and 6 explore input and repetition structures, which are the backbone of
programming logic and essential to creating useful programs in any language. You learn the
special considerations of string and array manipulation in Chapters 7, 8, and 9.

xxi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapters 10, 11, and 12 thoroughly cover inheritance and exception handling. Inheritance is
the object-oriented concept that allows you to develop new objects quickly by adapting the
features of existing objects; exception handling is the object-oriented approach to handling
errors. Both are important concepts in object-oriented design. Chapter 13 provides
information on handling files so you can permanently store and retrieve program output.

Chapters 14, 15, and 16 introduce GUI Swing components (Java’s visually pleasing,
user-friendly widgets), their layout managers, and graphics.

Features
The following features are new for the Eighth Edition:

JAVA 8E: All programs have been tested using Java 8e, the newest edition of Java.

WINDOWS 8.1: All programs have been tested in Windows 8.1, and all screen shots have
been taken in this new environment.

DATE AND TIME CLASSES: This edition provides thorough coverage of the java.time
package, which is new in Java 8e.

ON-SCREEN KEYBOARD: This edition provides instructions for displaying and using an
on-screen keyboard with either a touch screen or a standard screen.

MODERNIZED GRAPHICS OUTPUT: The chapter on graphics (Chapter 16) has been
completely rewritten to focus on Swing component graphics production using the
paintComponent() method.

MODERNIZED OVERRIDING: The @Override tag is introduced.

EXPANDED COVERAGE OF THE EQUALS() METHOD: The book provides a thorough
explanation of the difference between overloading and overriding the equals() method.

PROGRAMMING EXERCISES: Each chapter contains several new programming exercises
not seen in previous editions. All exercises and their solutions from the previous edition
that were replaced in this edition are still available in the Instructor’s Resource Kit.

Additionally, Java Programming, Eighth Edition, includes the following features:

OBJECTIVES: Each chapter begins with a list of objectives so you know the topics that will
be presented in the chapter. In addition to providing a quick reference to topics covered,
this feature provides a useful study aid.

YOU DO IT: In each chapter, step-by-step exercises help students create multiple working
programs that emphasize the logic a programmer uses in choosing statements to include.
These sections provide a means for students to achieve success on their own—even those
in online or distance learning classes.

NOTES: These highlighted tips provide additional information—for example, an
alternative method of performing a procedure, another term for a concept, background
information on a technique, or a common error to avoid.

xxii

P R E F A C E Features

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



EMPHASIS ON STUDENT RESEARCH: The student frequently is directed to the Java Web
site to investigate classes and methods. Computer languages evolve, and programming
professionals must understand how to find the latest language improvements. This book
encourages independent research.

FIGURES: Each chapter contains many figures. Code figures are most frequently 25 lines
or fewer, illustrating one concept at a time. Frequent screen shots show exactly how
program output appears. Callouts appear where needed to emphasize a point.

COLOR: The code figures in each chapter contain all Java keywords in blue. This helps
students identify keywords more easily, distinguishing them from programmer-selected
names.

FILES: More than 200 student files can be downloaded from the publisher’s Web site. Most
files contain the code presented in the figures in each chapter; students can run the code for
themselves, view the output, and make changes to the code to observe the effects. Other
files include debugging exercises that help students improve their programming skills.

TWO TRUTHS & A LIE: A short quiz reviews each chapter section, with answers provided.
This quiz contains three statements based on the preceding section of text—two
statements are true and one is false. Over the years, students have requested answers to
problems, but we have hesitated to distribute them in case instructors want to use
problems as assignments or test questions. These true–false quizzes provide students with
immediate feedback as they read, without “giving away” answers to the multiple-choice
questions and programming exercises.

DON’T DO IT: This section at the end of each chapter summarizes common mistakes and
pitfalls that plague new programmers while learning the current topic.

KEY TERMS: Each chapter includes a list of newly introduced vocabulary, shown in the
order of appearance in the text. The list of key terms provides a short review of the major
concepts in the chapter.

SUMMARIES: Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter. This feature provides a concise means for
students to check their understanding of the main points in each chapter.

REVIEW QUESTIONS: Each chapter includes 20 multiple-choice questions that serve as a
review of chapter topics.

GAME ZONE: Each chapter provides one or more exercises in which students can create
interactive games using the programming techniques learned up to that point; 70 game
programs are suggested in the book. The games are fun to create and play; writing them
motivates students to master the necessary programming techniques. Students might
exchange completed game programs with each other, suggesting improvements and
discovering alternate ways to accomplish tasks.

CASES: Each chapter contains two running case problems. These cases represent projects
that continue to grow throughout a semester using concepts learned in each new chapter.
Two cases allow instructors to assign different cases in alternate semesters or to divide
students in a class into two case teams.

xxiii

Features

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



GLOSSARY: This edition contains an alphabetized list of all key terms identified in the
book, along with their definitions.

APPENDICES: This edition includes useful appendices on working with the Java platform,
data representation, formatting output, generating random numbers, and creating Javadoc
comments.

QUALITY: Every program example, exercise, and game solution was tested by the author
and then tested again by a quality assurance team using Java Standard Edition (SE) 8, the
most recent version available.

CourseMate
The more you study, the better the results. Make the most of your study time by accessing
everything you need to succeed in one place. Read your textbook, take notes, review
flashcards, watch videos, and take practice quizzes online. CourseMate goes beyond the book
to deliver what you need! Learn more at www.cengage.com/coursemate.

The Java Programming CourseMate includes:

Debugging Exercises: Four error-filled programs accompany each chapter. By
debugging these programs, students can gain expertise in program logic in general and
the Java programming language in particular.

Video Lessons: Each chapter is accompanied by at least three video lessons that help to
explain important chapter concepts. These videos were created and narrated by the
author.

Interactive Study Aids: An interactive eBook, quizzes, flashcards, and more!

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly at www.CengageBrain.com.

Instructor Resources
The following teaching tools are available for download at our Instructor Companion Site.
Simply search for this text at sso.cengage.com. An instructor login is required.

Electronic Instructor’s Manual: The Instructor’s Manual that accompanies this
textbook contains additional instructional material to assist in class preparation,
including items such as Overviews, Chapter Objectives, Teaching Tips, Quick
Quizzes, Class Discussion Topics, Additional Projects, Additional Resources, and Key
Terms. A sample syllabus is also available. Additional exercises in the Instructor’s
Manual include:

Tough Questions: Two or more fairly difficult questions that an applicant
might encounter in a technical job interview accompany each chapter. These
questions are often open-ended; some involve coding and others might involve
research.

xxiv

P R E F A C E Instructor Resources

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Up for Discussion: A few thought-provoking questions concerning programming in
general or Java in particular supplement each chapter. The questions can be used to
start classroom or online discussions, or to develop and encourage research, writing,
and language skills.

Programming Exercises and Solutions: Each chapter is accompanied by several
programming exercises to supplement those offered in the text. Instructors can use
these exercises as additional or alternate assignments, or as the basis for lectures.

Test Bank: Cengage Learning Testing Powered by Cognero is a flexible, online system
that allows you to:

Author, edit, and manage test bank content from multiple Cengage Learning
solutions.

Create multiple test versions in an instant.

Deliver tests from your LMS, your classroom, or anywhere you want.

PowerPoint Presentations: This text provides PowerPoint slides to accompany each
chapter. Slides may be used to guide classroom presentations, to make available to
students for chapter review, or to print as classroom handouts. Files are provided for every
figure in the text. Instructors may use the files to customize PowerPoint slides, illustrate
quizzes, or create handouts.

Solutions: Solutions to “You Do It” exercises and all end-of-chapter exercises are
available. Annotated solutions are provided for some of the multiple-choice Review
Questions. For example, if students are likely to debate answer choices or not understand
the choice deemed to be the correct one, a rationale is provided.

Acknowledgments
I would like to thank all of the people who helped to make this book a reality, including Dan
Seiter, Development Editor; Alyssa Pratt, Senior Content Developer; Carmel Isaac, Content
Project Manager; and Chris Scriver and Danielle Shaw, quality assurance testers. I am lucky to
work with these professionals who are dedicated to producing high-quality instructional
materials.

I am also grateful to the reviewers who provided comments and encouragement during this
book’s development, including Bernice Cunningham, Wayne County Community College
District; Bev Eckel, Iowa Western Community College; John Russo, Wentworth Institute of
Technology; Leslie Spivey, Edison Community College; and Angeline Surber, Mesa
Community College.

Thanks, too, to my husband, Geoff, for his constant support and encouragement. Finally, this
book is dedicated to the newest Farrell, coming March 2015. As this book goes to production,
I don’t know your name or even your gender, but I do know that I love you.

Joyce Farrell

xxv

Acknowledgments

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Read This Before
You Begin
The following information will help you as you prepare to use this textbook.

To the User of the Data Files
To complete the steps and projects in this book, you need data files that have been created
specifically for this book. Your instructor will provide the data files to you. You also can
obtain the files electronically from www.CengageBrain.com. Find the ISBN of your title on the
back cover of your book, then enter the ISBN in the search box at the top of the Cengage
Brain home page. You can find the data files on the product page that opens. Note that
you can use a computer in your school lab or your own computer to complete the exercises
in this book.

Using Your Own Computer
To use your own computer to complete the steps and exercises, you need the following:

Software: Java SE 8, available from www.oracle.com/technetwork/java/index.html. Although
almost all of the examples in this book will work with earlier versions of Java, this book was
created using Java 8. The book clearly points out the few cases when an example is based on
Java 7 and will not work with earlier versions of Java. You also need a text editor, such as
Notepad. A few exercises ask you to use a browser for research.

Hardware: If you are using Windows 8, the Java Web site suggests at least 128 MB of
memory and at least 181 MB of disk space. For other operating system requirements, see
http://java.com/en/download/help.

xxvi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Features
This text focuses on helping students become better programmers and understand
Java program development through a variety of key features. In addition to Chapter
Objectives, Summaries, and Key Terms, these useful features will help students
regardless of their learning styles.

YOU DO IT sections walk
students through program
development step by step.

The author does an awesome
job: the examples, problems,
and material are very easy to
understand!
—Bernice Cunningham,
Wayne County Community
College District

VIDEO LESSONS help 
explain important chapter 
concepts. Videos are part 
of the text’s enhanced 
CourseMate site.

NOTES provide 
additional information—
for example, another 
location in the book that 
expands on a topic, or a 
common error to watch 
out for.

xxvii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



THE DON’T DO IT ICON illustrates 
how NOT to do something—for 
example, having a dead code 
path in a program. This icon 
provides a visual jolt to the student, 

are NOT to be emulated and making 
students more careful to recognize 
problems in existing code.

TWO TRUTHS & A LIE quizzes appear 
after each chapter section, with
answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are
true and one is false. Answers give
immediate feedback without “giving away”
answers to the multiple-choice questions
and programming problems later in
the chapter. Students also have the option
to take these quizzes electronically
through the enhanced CourseMate site.

DON'T DO IT sections at the end
of each chapter list advice for
avoiding common programming errors.

xxviii

F E A T U R E S

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assessment
I found the author’s explanation of
difficult topics to be very clear and
thorough.

—Leslie Spivey,
Edison Community College

PROGRAMMING EXERCISES provide
opportunities to practice concepts. These
exercises increase in difficulty and allow
students to explore each major
programming concept presented in the
chapter. Additional programming
exercises are available in the Instructor's
Resource Kit.

REVIEW QUESTIONS test 
student comprehension of the
major ideas and techniques
presented. Twenty questions
follow each chapter.

xxix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



DEBUGGING EXERCISES are
included with each chapter because
examining programs critically and
closely is a crucial programming skill.
Students can download these exercises
at www.CengageBrain.com and through
the CourseMate available for this text.
These files are also available to
instructors through sso.cengage.com.

GAME ZONE EXERCISES are included
at the end of each chapter. Students can
create games as an additional entertaining
way to understand key programming
concepts.

CASE PROBLEMS provide opportunities
to build more detailed programs that
continue to incorporate increasing
functionality throughout the book.

xxx

A S S E S S M E N T

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



C H A P T E R 1
Creating Java
Programs

In this chapter, you will:

Define basic programming terminology

Compare procedural and object-oriented programming

Describe the features of the Java programming language

Analyze a Java application that produces console output

Compile a Java class and correct syntax errors

Run a Java application and correct logic errors

Add comments to a Java class

Create a Java application that produces GUI output

Find help

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Learning Programming Terminology
A computer program is a set of instructions that you write to tell a computer what to do.
Computer equipment, such as a monitor or keyboard, is hardware, and programs are
software. A program that performs a task for a user (such as calculating and producing
paychecks, word processing, or playing a game) is application software; a program that
manages the computer itself (such as Windows or Linux) is system software. The logic
behind any computer program, whether it is an application or system program, determines
the exact order of instructions needed to produce desired results. Much of this book describes
how to develop the logic to create application software.

All computer programs ultimately are converted to machine language. Machine language,
or machine code, is the most basic set of instructions that a computer can execute. Each type
of processor (the internal hardware that handles computer instructions) has its own set of
machine language instructions. Programmers often describe machine language using 1s and
0s to represent the on-and-off circuitry of computer systems.

The system that uses only 1s and 0s is the binary numbering system. Appendix B describes the binary
system in detail. Later in this chapter, you will learn that bytecode is the name for the binary code created
when Java programs are converted to machine language.

Machine language is a low-level programming language, or one that corresponds closely to a
computer processor’s circuitry. Low-level languages require you to use memory addresses for
specific machines when you create commands. This means that low-level languages are
difficult to use and must be customized for every type of machine on which a program runs.

Fortunately, programming has evolved into an easier task because of the development of
high-level programming languages. A high-level programming language allows you to use
a vocabulary of reasonable terms, such as read, write, or add, instead of the sequences of
1s and 0s that perform these tasks. High-level languages also allow you to assign single-word,
intuitive names to areas of computer memory where you store data. This means you can use
identifiers such as hoursWorked or rateOfPay, rather than having to remember their memory
locations. Currently, over 2,000 high-level programming languages are available to
developers; Java is one of them.

Each high-level language has its own syntax, or rules about how language elements are
combined correctly to produce usable statements. For example, depending on the specific
high-level language, you might use the verb print or write to produce output. All languages
have a specific, limited vocabulary (the language’s keywords) and a specific set of rules for
using that vocabulary. When you are learning a computer programming language, such as
Java, C++, or Visual Basic, you really are learning the vocabulary and syntax for that language.

Using a programming language, programmers write a series of program statements, similar
to English sentences, to carry out the tasks they want the program to perform. Program
statements are also known as commands because they are orders to the computer, such as
“output this word” or “add these two numbers.”

C H A P T E R 1 Creating Java Programs

2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



After the program statements are written, high-level language programmers use a computer
program called a compiler or interpreter to translate their language statements into machine
language. A compiler translates an entire program before carrying out any statements, or
executing them, whereas an interpreter translates one program statement at a time,
executing a statement as soon as it is translated.

Whether you use a compiler or interpreter often depends on the programming language you use. For
example, C++ is a compiled language, and Visual Basic is an interpreted language. Each type of translator
has its supporters; programs written in compiled languages execute more quickly, whereas programs
written in interpreted languages can be easier to develop and debug. Java uses the best of both technolo-
gies: a compiler to translate your programming statements and an interpreter to read the compiled code line
by line when the program executes (also called at run time).

Compilers and interpreters issue one or more error messages each time they encounter an
invalid program statement—that is, a statement containing a syntax error, or misuse of the
language. Examples of syntax errors include misspelling a keyword or omitting a word that a
statement requires. When a syntax error is detected, the programmer can correct the error
and attempt another translation. Repairing all syntax errors is the first part of the process
of debugging a program—freeing the program of all flaws or errors, also known as bugs.
Figure 1-1 illustrates the steps a programmer takes while developing an executable program.
You will learn more about debugging Java programs later in this chapter.

Learning Programming Terminology

3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



As Figure 1-1 shows, you might write a program with correct syntax that still contains logic
errors. A logic error is a bug that allows a program to run, but that causes it to operate
incorrectly. Correct logic requires that all the right commands be issued in the appropriate
order. Examples of logic errors include multiplying two values when you meant to divide

De
bu

gg
in

g 
pr

oc
es

s

De
bu

gg
in

g 
pr

oc
es

s

Yes

Yes

No

No

Use translating software (a compiler or
interpreter) that translates programming
language statements to machine language

Examine list of
syntax errors

Write program language statements
that correspond to the logic

Examine
program output

Are there runtime
or output errors?

Can all statements
be successfully
translated?

Plan program logic

Execute the program

Figure 1-1 The program development process

C H A P T E R 1 Creating Java Programs

4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



them or producing output prior to obtaining the appropriate input. When you develop a
program of any significant size, you should plan its logic before you write any program
statements.

Correcting logic errors is much more difficult than correcting syntax errors. Syntax errors are
discovered by the language translator when you compile a program, but a program can be free
of syntax errors and execute while still retaining logic errors. Often you can identify logic
errors only when you examine a program’s output. For example, if you know an employee’s
paycheck should contain the value $4,000, but when you examine a payroll program’s output
you see that it holds $40, then a logic error has occurred. Perhaps an incorrect calculation was
performed, or maybe the hours worked value was output by mistake instead of the net pay
value. When output is incorrect, the programmer must carefully examine all the statements
within the program, revise or move the offending statements, and translate and test the
program again.

Just because a program produces correct output does not mean it is free from logic errors. For example,
suppose that a program should multiply two values entered by the user, that the user enters two 2s, and the
output is 4. The program might actually be adding the values by mistake. The programmer would discover
the logic error only by entering different values, such as 5 and 7, and examining the result.

Programmers call some logic errors semantic errors. For example, if you misspell a programming
language word, you commit a syntax error, but if you use a correct word in the wrong context, you commit a
semantic error.

TWO TRUTHS & A LIE

Learning Programming Terminology

In each “Two Truths & a Lie” section, two of the numbered statements are true, and one
is false. Identify the false statement and explain why it is false.

1. Unlike a low-level programming language, a high-level programming language
allows you to use a vocabulary of reasonable terms instead of the sequences of
on-and-off switches that perform the corresponding tasks.

2. A syntax error occurs when you misuse a language; locating and repairing all
syntax errors is part of the process of debugging a program.

3. Logic errors are fairly easy to find because the software that translates a program
finds all the logic errors for you.

.t upt uo s’ mar gor p a gni ni maxe yb yl no der evocsi d eb yll ausu nac
sr orr e ci gol t ub, sr orr e xat nys sdnif r ot al snart egaugnal A. 3# si t ne met at s esl af ehT

Learning Programming Terminology

5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Comparing Procedural and Object-Oriented
Programming Concepts
Two popular approaches to writing computer programs are procedural programming and
object-oriented programming.

Procedural Programming
Procedural programming is a style of programming in which operations are executed one
after another in sequence. In procedural applications, you create names for computer
memory locations that can hold values—for example, numbers and text—in electronic
form. The named computer memory locations are called variables because they hold values
that might vary. For example, a payroll program might contain a variable named rateOfPay.
The memory location referenced by the name rateOfPay might contain different values
(a different value for every employee of the company) at different times. During the execution
of the payroll program, each value stored under the name rateOfPay might have many
operations performed on it—for example, the value might be read from an input device,
be multiplied by another variable representing hours worked, and be printed on paper.

For convenience, the individual operations used in a computer program are often grouped
into logical units called procedures. For example, a series of four or five comparisons and
calculations that together determine a person’s federal withholding tax value might be
grouped as a procedure named calculateFederalWithholding. A procedural program
defines the variable memory locations and then calls a series of procedures to input,
manipulate, and output the values stored in those locations. When a program calls a
procedure, the current logic is temporarily abandoned so that the procedure’s commands can
execute. A single procedural program often contains hundreds of variables and procedure
calls. Procedures are also called modules, methods, functions, and subroutines. Users of
different programming languages tend to use different terms. As you will learn later in this
chapter, Java programmers most frequently use the term method.

Object-Oriented Programming
Object-oriented programming is an extension of procedural programming in which you take
a slightly different approach to writing computer programs. Writing object-oriented
programs involves:

Creating classes, which are blueprints for objects

Creating objects, which are specific instances of those classes

Creating applications that manipulate or use those objects

Programmers use OO as an abbreviation for object-oriented; it is pronounced “oh oh.” Object-oriented
programming is abbreviated OOP, and pronounced to rhyme with soup.

C H A P T E R 1 Creating Java Programs

6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Originally, object-oriented programming was used most frequently for two major types of
applications:

Computer simulations, which attempt to mimic real-world activities so that their
processes can be improved or so that users can better understand how the real-world
processes operate

Graphical user interfaces, or GUIs (pronounced “gooeys”), which allow users to interact
with a program in a graphical environment

Thinking about objects in these two types of applications makes sense. For example, a city
might want to develop a program that simulates traffic patterns to help prevent traffic tie-ups.
Programmers would create classes for objects such as cars and pedestrians that contain their
own data and rules for behavior. For example, each car has a speed and a method for changing
that speed. The specific instances of cars could be set in motion to create a simulation of a real
city at rush hour.

Creating a GUI environment for users is also a natural use for object orientation. It is easy to
think of the components a user manipulates on a computer screen, such as buttons and scroll
bars, as similar to real-world objects. Each GUI object contains data—for example, a button
on a screen has a specific size and color. Each object also contains behaviors—for example,
each button can be clicked and reacts in a specific way when clicked. Some people consider
the term object-oriented programming to be synonymous with GUI programming, but object-
oriented programming means more. Although many GUI programs are object oriented, not
all object-oriented programs use GUI objects. Modern businesses use object-oriented design
techniques when developing all sorts of business applications, whether they are GUI
applications or not. In the first 13 chapters of this book, you will learn object-oriented
techniques that are appropriate for any program type; in the last chapters, you will apply what
you have learned about those techniques specifically to GUI applications.

Understanding object-oriented programming requires grasping three basic concepts:

Encapsulation as it applies to classes as objects

Inheritance

Polymorphism

Understanding Classes, Objects, and Encapsulation
In object-oriented terminology, a class is a term that describes a group or collection of
objects with common properties. In the same way that a blueprint exists before any houses
are built from it, and a recipe exists before any cookies are baked from it, a class definition
exists before any objects are created from it. A class definition describes what attributes its
objects will have and what those objects will be able to do. Attributes are the characteristics
that define an object; they are properties of the object. When you learn a programming
language such as Java, you learn to work with two types of classes: those that have already
been developed by the language’s creators and your own new, customized classes.

Comparing Procedural and Object-Oriented Programming Concepts

7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



An object is a specific, concrete instance of a class. Creating an instance is called
instantiation. You can create objects from classes that you write and from classes written by
other programmers, including Java’s creators. The values contained in an object’s properties
often differentiate instances of the same class from one another. For example, the class
Automobile describes what Automobile objects are like. Some properties of the Automobile
class are make, model, year, and color. Each Automobile object possesses the same attributes,
but not necessarily the same values for those attributes. One Automobile might be a 2010
white Ford Taurus and another might be a 2015 red Chevrolet Camaro. Similarly, your dog
has the properties of all Dogs, including a breed, name, age, and whether its shots are current.
The values of the properties of an object are referred to as the object’s state. In other words,
you can think of objects as roughly equivalent to nouns, and of their attributes as similar to
adjectives that describe the nouns.

When you understand an object’s class, you understand the characteristics of the object. If
your friend purchases an Automobile, you know it has a model name, and if your friend gets a
Dog, you know the dog has a breed. Knowing what attributes exist for classes allows you to ask
appropriate questions about the states or values of those attributes. For example, you might
ask how many miles the car gets per gallon, but you would not ask whether the car has had
shots. Similarly, in a GUI operating environment, you expect each component to have
specific, consistent attributes and methods, such as a window having a title bar and a close
button, because each component gains these properties as a member of the general class of
GUI components. Figure 1-2 shows the relationship of some Dog objects to the Dog class.

By convention, programmers using Java begin their class names with an uppercase letter. Thus, the class
that defines the attributes and methods of an automobile would probably be named Automobile, and the
class for dogs would probably be named Dog. However, following this convention is not required to produce
a workable program.

Dog class definition Dog class instances (objects)

Every Dog that is
created will have
a:

Ginger
6
Akita
Up to date

Bowser
2
Retriever
Up to date

Roxy
1
Beagle
Up to date

Name

Age

Breed

Shot status

Figure 1-2 Dog class definition and some objects created from it

C H A P T E R 1 Creating Java Programs

8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Besides defining properties, classes define methods their objects can use. A method is a
self-contained block of program code that carries out some action, similar to a procedure in a
procedural program. An Automobile, for example, might have methods for moving forward,
moving backward, and determining the status of its gas tank. Similarly, a Dog might have
methods for walking, eating, and determining its name, and a program’s GUI components
might have methods for maximizing and minimizing them as well as determining their size.
In other words, if objects are similar to nouns, then methods are similar to verbs.

In object-oriented classes, attributes and methods are encapsulated into objects.
Encapsulation refers to two closely related object-oriented notions:

Encapsulation is the enclosure of data and methods within an object. Encapsulation allows
you to treat all of an object’s methods and data as a single entity. Just as an actual dog
contains all of its attributes and abilities, so would a program’s Dog object.

Encapsulation also refers to the concealment of an object’s data and methods from outside
sources. Concealing data is sometimes called information hiding, and concealing how
methods work is implementation hiding; you will learn more about both terms in the
chapter “Using Methods, Classes, and Objects.” Encapsulation lets you hide specific object
attributes and methods from outside sources and provides the security that keeps data and
methods safe from inadvertent changes.

If an object’s methods are well written, the user can be unaware of the low-level details of how
the methods are executed, and the user must simply understand the interface or interaction
between the method and the object. For example, if you can fill your Automobile with
gasoline, it is because you understand the interface between the gas pump nozzle and the
vehicle’s gas tank opening. You don’t need to understand how the pump works mechanically
or where the gas tank is located inside your vehicle. If you can read your speedometer, it does
not matter how the displayed figure is calculated. As a matter of fact, if someone produces a
superior, more accurate speed-determining device and inserts it in your Automobile, you
don’t have to know or care how it operates, as long as your interface remains the same.
The same principles apply to well-constructed classes used in object-oriented programs—
programs that use classes only need to work with interfaces.

Understanding Inheritance and Polymorphism
An important feature of object-oriented program design is inheritance—the ability to create
classes that share the attributes and methods of existing classes, but with more specific
features. For example, Automobile is a class, and all Automobile objects share many traits and
abilities. Convertible is a class that inherits from the Automobile class; a Convertible is a
type of Automobile that has and can do everything a “plain” Automobile does—but with an
added ability to lower its top. (In turn, Automobile inherits from the Vehicle class.)
Convertible is not an object—it is a class. A specific Convertible is an object—for example,
my1967BlueMustangConvertible.

Inheritance helps you understand real-world objects. For example, the first time you
encounter a convertible, you already understand how the ignition, brakes, door locks, and

Comparing Procedural and Object-Oriented Programming Concepts

9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.




