ighth Edition

E

Joyce Farrell

JAVA PROGRAMMING

JAVA" PROGRAMMING

JOYCE FARRELL

~ "¢ CENGAGE
% |earning

Australia Brazil « Japan « Korea « Mexico « Singapore « Spain « United Kingdom « United States

>

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to
remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by
ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

~% CENGAGE
1% Learning

Java Programming,
Eighth Edition
Joyce Farrell

Product Director:
Kathleen McMahon

Senior Content Developer:
Alyssa Pratt

Development Editor: Dan Seiter
Marketing Manager: Eric LaScola

Manufacturing Planner:
Julio Esperas

Art Director: Jack Pendleton

Production Management,
Copyediting, Composition,
Proofreading, and Indexing:

Integra Software Services Pvt. Ltd.

Cover Photo:
©Maram/Shutterstock.com

© 2016, 2014, 2012 Cengage Learning
WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and
retrieval systems, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2014956152
ISBN: 978-1-285-85691-9

Cengage Learning

20 Channel Center Street
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning
solutions with office locations around the globe, including Singapore,
the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your
local office at www.cengage.com/global.

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

All images © 2016 Cengage Learning®. All rights reserved.

To learn more about Cengage Learning Solutions, visit
www.cengage.com.

Purchase any of our products at your local college store
or at our preferred online store www.cengagebrain.com.

Printed in the United States of America

Print Number: 01

Print Year: 2015

Brief Contents

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

Preface

Creating Java Programs

Using Data

Using Methods, Classes, and Objects
More Object Concepts
Making Decisions

Looping

Characters, Strings, and the StringBuilder . . .
Arrays

Advanced Array Concepts
Introduction to Inheritance
Advanced Inheritance Concepts

Exception Handling

File Input and OQutput
Introduction to Swing Components
Advanced GUI Topics

Graphics

Working with the Java Platform

Data Representation

Formatting Output

Generating Random Numbers

Javadoc

Glossary

Index

Contents

Preface Xxxi
CHAPTER 1 Creating Java Programs 1
Learning Programming Terminology 2
Comparing Procedural and Object-Oriented
Programming Concepts 6
Procedural Programming 6
Object-Oriented Programming 6
Understanding Classes, Objects, and Encapsulation 7
Understanding Inheritance and Polymorphism 9
Features of the Java Programming Language 11
JavaProgram Types 12
Analyzing a Java Application that Produces Console Output 13
Understanding the Statement that Produces the Qutput 14
Understanding the FirstClass 15
Indent Style 18
Understanding the main() Method 19
SavingaldavaClass 21
Compiling a Java Class and Correcting Syntax Errors 23
CompilingalJavaClass 23
Correcting Syntax Errors 24
Running a Java Application and Correcting Logic Errors 29
Running a Java Application 29
Modifying a Compiled JavaClass 30
Correcting LogicErrors 31
Adding CommentstoaJavaClass 32
Creating a Java Application that Produces GUI Output 35
FindngHelp, 38
DontDolt 39
KeyTerms o e 41

CHAPTER 2

Chapter Summary 45

Review Questions 46
Exercises e 48
Programming Exercises 48
Debugging Exercises 50
GameZone 50
CaseProblems 51
UsingData53
Declaring and Using Constants and Variables 54
Declaring Variables 55
Declaring Named Constants 56
The Scope of Variables and Constants 58
Concatenating Strings to Variables and Constants 58
Pitfall: Forgetting that a Variable Holds
OneValueataTime 60
Learning About Integer Data Types 64
Using the booleanDataType 70
Learning About Floating-Point Data Types 71
Using the charDataType 72
Using the Scanner Class to Accept Keyboard Input 78
Pitfall: Using nextLine () Following One of the
Other Scanner Input Methods 81
Using the JOptionPane Class to Accept GUl Input 87
Using Input Dialog Boxes 87
Using Confirm Dialog Boxes 91
Performing Arithmetic 93
Associativity and Precedence 95
Writing Arithmetic Statements Efficiently 96
Pitfall: Not Understanding Imprecision
in Floating-Point Numbers 96
Understanding Type Conversion 101
Automatic Type Conversion 101
Explicit Type Conversions 102
DontDolt 106

KeyTerms e 107

vii

CHAPTER 3

Chapter Summary 111

Review Questions 111
Exercises oo 114
Programming Exercises 114
Debugging Exercises 116
Game Zone. 117
CaseProblems, 118
Using Methods, Classes, and Objects 119
Understanding Method Calls and Placement 120
Understanding Method Construction 123
Access Specifiers L. 123
ReturnType 124
Method Name 125
Parentheses oL 125
Adding Parametersto Methods 129
Creating a Method that Receives a Single Parameter 130
Creating a Method that Requires Multiple Parameters 133
Creating Methods that Return Values 136
Chaining Method Calls 138
Learning About Classes and Objects 142
CreatingaClass 145
Creating Instance MethodsinaClass 147
Organizing Classes 150
Declaring Objects and Using their Methods 154
Understanding Data Hiding 156
An Introduction to Using Constructors 159
Understanding that Classes Are Data Types 163
Don'tDolt 168
KeyTerms 168
Chapter Summary 170
Review Questions 171
Exerciseso 174
Programming Exercises 174
Debugging Exercises 177
GameZoneo 178

CaseProblems 179

CHAPTER 4 More Object Concepts 183

Understanding Blocks and Scope 184
Overloading a Method 192
Automatic Type Promotion in Method Calls 194
Learning About Ambiguity 199 ix .
Creating and Calling Constructors with Parameters 200
Overloading Constructors 201
Learning About the this Reference 205
Using the this Reference to Make Overloaded Constructors
More Efficiento 209
Using staticFields 213
Using ConstantFields 215
Using Automatically Imported, Prewritten Constants
andMethods 220
TheMathClass 221
Importing Classes that Are Not Imported Automatically 223
Using the LocalDateClass 224
Understanding Composition and Nested Classes 230
Composition 230
NestedClasses 232
DontDolt 234
KeyTerms e 234
Chapter Summary 236
Review Questions 236
Exerciseso 239
Programming Exercises 239
Debugging Exercises 242
GameZone 242
CaseProblems, 243
CHAPTER 5 Making Decisions 245
Planning Decision-Making Logic 246
Theifand if..else Statements 248
Theif Statement 248
Pitfall: Misplacing a Semicolon in an if Statement 249
Pitfall: Using the Assignment Operator Instead
of the Equivalency Operator 250

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Pitfall: Attempting to Compare Objects

Using the Relational Operators 251
The if.else Statement. 251
Using Multiple Statements in if and if..else Clauses 254
. X Nesting if and if..else Statements 260
Using Logical AND and OR Operators 263
The AND Operator 263
The OROperator 265
Short-Circuit Evaluation 266
Making Accurate and Efficient Decisions 269
Making Accurate Range Checks 270
Making Efficient Range Checks 272
Using & and | | Appropriately 273
Using the switch Statement 274
Using the Conditional and NOT Operators 280
Using the NOT Operator 281
Understanding Operator Precedence 282
Adding Decisions and Constructors
to Instance Methods 285
DontDolt 289
KeyTerms« o o o o e 289
Chapter Summary 291
Review Questions 291
Exercises oo 294
Programming Exercises 294
Debugging Exercises 297
Game Zone e 297
CaseProblems 299
CHAPTER 6 Looping 301
Learning About the Loop Structure 302
Creatingwhileloops 303
Writing a Definite whileloop 303
Pitfall: Failing to Alter the Loop Control Variable
Within the LoopBody 305
Pitfall: Unintentionally Creating a Loop with
anEmptyBodyo 306

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Altering a Definite Loop’s Control Variable 307

Writing an Indefinite whileloop 308
ValidatingData 310
Using Shortcut Arithmetic Operators 314
Creatinga forloop 319 xi .
Unconventional for Loops 320 ———
Learning How and When to Use a do.while Loop 325
Learning About Nested Loops 328
Improving Loop Performance 333
Avoiding Unnecessary Operations 333
Considering the Order of Evaluation of Short-Circuit
Operators 334
ComparingtoZero 334
Employing Loop Fusion 336
Using Prefix Incrementing Rather than Postfix
Incrementingo 337
A Final Note on Improving Loop Performance 338
DontDolt 342
KeyTerms 342
Chapter Summary 344
Review Questions L. 344
Exerciseso 347
Programming Exercises 347
Debugging Exercises 350
Game Zone 350
CaseProblems, 352
CHAPTER 7 Characters, Strings, and
the stringBuilder 353
Understanding String Data Problems 354
Using Character ClassMethods 355
Declaring and Comparing String Objects 359
Comparing StringValues 359
Empty and null1 Strings 363
Using Other String Methods 365
Converting String Objects to Numbers 369

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning About the StringBuilder

and StringBuffer Classes 374
Don'tDolt 381
KeyTerms e 382

i Chapter Summary 382
Review Questions 383
Exercises s 385

Programming Exercises 385

Debugging Exercises 388

GameZone 388

CaseProblems 391

CHAPTER 8 Arrays 393
Declaring Arrayso 394
Initializing an Array Lo 399
Using Variable Subscripts withanArray 402

Using the Enhanced forloop 403

Using PartofanArray 404
Declaring and Using Arrays of Objects 406

Using the Enhanced for Loop with Objects 408

Manipulating Arrays of Strings 408
Searching an Array and Using Parallel Arrays 414

Using Parallel Arrays 415

Searching an Array foraRangeMatch 418
Passing Arrays to and Returning Arrays from Methods 422

Returning an Array fromaMethod 426
Don'tDolt 428
KeyTerms e 428
Chapter Summary 429
Review Questions 430
Exercises o 433

Programming Exercises 433

Debugging Exercises 435

GameZone 435

CaseProblems 438

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 9 Advanced Array Concepts 439

Sorting Array Elements Using the Bubble Sort Algorithm 440
Using the Bubble Sort Algorithm 440
Improving Bubble Sort Efficiency 442
Sorting Arrays of Objects 443 xiii .

Sorting Array Elements Using the Insertion Sort Algorithm 448

Using Two-Dimensional and Other Multidimensional Arrays 452

Passing a Two-Dimensional Array to aMethod 454
Using the Tength Field with a Two-Dimensional Array 455
Understanding Ragged Arrays 456
Using Other Multidimensional Arrays 456
Using the ArraysClass 459
Using the ArrayListClass 467
Creating Enumerations 472
Don'tDolt 479
KeyTerms« o o o e e 479
Chapter Summary 480
Review Questions 481
Exercises 484
Programming Exercises 484
Debugging Exercises 486
Game Zone 487
CaseProblems, 490

CHAPTER 10 Introduction to Inheritance 491

Learning About the Concept of Inheritance 492
Diagramming Inheritance Usingthe UML 492
Inheritance Terminology 495

ExtendingClasses 496

Overriding Superclass Methods 502
Using the @OverrideTag 504

Calling Constructors During Inheritance 507
Using Superclass Constructors that

Require Arguments 508

Accessing Superclass Methods 513
Comparing thisandsuper 515

Employing Information Hiding 516

Copyright 2016 Cengage Learning. All Rghts Resersed. May not b copied, scanned, or duplicated, in whole or in part. Due (o clectronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Methods You Cannot Override 518
A Subclass Cannot Override static Methods in

lts Superclass 518

A Subclass Cannot Override final Methods in
i Its Superclasso 522

A Subclass Cannot Override Methods

inafinal Superclass 523
Don'tDolt 525
KeyTerms e 525
Chapter Summary 526
Review Questions 527
Exercises 530
Programming Exercises 530
Debugging Exercises 533
GameZone 534
CaseProblems, 535
CHAPTER 11 Advanced Inheritance Concepts 537
Creating and Using Abstract Classes 538
Using Dynamic Method Binding 547
Using a Superclass as a Method Parameter Type 549
Creating Arrays of Subclass Objects 551
Using the Object Class and Its Methods 554
Using the toString() Method 556
Using the equals() Method 559
Using Inheritance to Achieve Good Software Design 564
Creating and Using Interfaces 565
Creating Interfaces to Store Related Constants 570
Creating and Using Packages 574
Don'tDolt 580
KeyTerms 580
Chapter Summary 581
Review Questions 582
Exercises 585
Programming Exercises 585
Debugging Exercises 589
Game Zone 590
CaseProblems 590

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 12 Exception Handling 593

Learning About Exceptions 594
Trying Code and Catching Exceptions 599
Using a try Block to Make Programs “Foolproof” 604
Declaring and Initializing Variables in try..catch Blocks . . . 606 xv .
Throwing and Catching Multiple Exceptions 609
Using the finallyBlock 615
Understanding the Advantages of Exception Handling 618
Specifying the Exceptions that a Method Can Throw 621
Tracing Exceptions Through the Call Stack 626
Creating Your Own ExceptionClasses 630
Using Assertions 634
Displaying the Virtual Keyboard 650
DontDolt 653
KeyTerms 654
Chapter Summary 655
Review Questions 656
Exercises o 659
Programming Exercises 659
Debugging Exercises 662
GameZone. e 662
CaseProblems, 663

CHAPTER 13 File Input and Qutput 665

Understanding Computer Files 666
Using the Pathand Files Classes 667
CreatingaPath 668
Retrieving Information AboutaPath 669
Converting a Relative Path to an Absolute One 670
Checking File Accessibility 671
DeletngaPath 673
Determining File Attributes 674
File Organization, Streams, and Buffers 678
Using Java’'slOClasses 680
WritingtoaFile L. 683
Reading fromafFile 685

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating and Using Sequential DataFiles 687

Learning About Random Access Files 693
Writing Records to a Random Access DataFile 697
Reading Records from a Random Access DataFile 704
XVi Accessing a Random Access File Sequentially 704
Accessing a Random Access File Randomly 705
DontDolt 719
KeyTerms e 719
Chapter Summary 720
Review Questions 721
Exerciseso 724
Programming Exercises 724
Debugging Exerciseso L. 726
Game Zone e 727
CaseProblems 727

CHAPTER 14 Introduction to Swing Components 729

Understanding Swing Components 730
Using the JFrame Class 731
Customizing a JFrame’s Appearance 734
Using the JLabel Class 738
Changing a JLabeT'sFont 740
Using a Layout Manager 743
Extending the JFrame Class 746
Adding JTextFields, JButtons, and Tool Tips to a
JFrame o 748
Adding JTextFields 748
Adding JButtons 750
Using Tool Tips 752
Learning About Event-Driven Programming 755
Preparing Your Class to Accept Event Messages 756
Telling Your Class to Expect Events to Happen 757
Telling Your Class How to Respond to Events 757
An EventDriven Program 757
Using Multiple Event Sources 759
Using the setEnabled() Method 761
Understanding Swing Event Listeners 764
Copyright 2016 Cengage Learming. All Rghts Reserved. May not b copied,scanned, or duplicated, in whole or in par. Due to clectronie rights, some third party content may be suppressed from the cBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the JCheckBox, ButtonGroup, and JComboBox

Classes e 767
The JCheckBox Class 767
The ButtonGroup Class 771
The JComboBox Class 772 xvii .
Don'tDolt 780 ——
KeyTerms e 780
Chapter Summary 781
Review Questions 783
Exerciseso 785
Programming Exercises 785
Debugging Exercises 787
GameZoneo 787
CaseProblems 788

CHAPTER 15 Advanced GUIl Topics 791

Understanding the Content Pane 792
Using Color o 795
Learning More About Layout Managers 797
Using BorderLayout 798
Using FlowLayout 800
Using GridLayout 802
Using CardLayout 803
Using Advanced Layout Managers 805
Using the JPanel Class 813
Creating JScrol1Panes 821
A Closer Look at Events and Event Handling 824
An EventHandling Example: KeyListener 827
Using AWTEvent Class Methods 830
Understanding x- and y-Coordinates 832
Handling Mouse Events 832
UsingMenus s 837
Using Specialized Menultems 841
Using addSeparator() 843
Using setMnemonic() 843
DontDolt e 848
KeyTerms« o o o o e 849

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary 850

Review Questions 851

Exercises oo 853

Programming Exercises 853

. xviii Debugging Exercises 855
GameZoneo 855

CaseProblems 859

CHAPTER 16 Graphics 861

Learning About Rendering Methods 862
Drawing Strings 865
Repainting 867
SettingaFont 869
UsingColor 870
Drawing Linesand Shapes 874
Drawing Lines 874
Drawing Unfilled and Filled Rectangles 875
Drawing Clear Rectangles 875
Drawing Rounded Rectangles 876
Drawing Shadowed Rectangles 878
Drawing Ovals 879
Drawing Arcs Lo 880
Creating Polygons 881
CopyinganArea 883
Using the paint () Method with JFrames 883
Learning More AboutFonts 891
Discovering Screen Statistics 893
Discovering Font Statistics 894
Drawing with Java 2D Graphics 898
Specifying the Rendering Attributes 899
Setting a Drawing Stroke 901
Creating ObjectstoDraw 902
Don'tDolt 910
KeyTerms e 911
Chapter Summary 911
Review Questions 912
Exercises 915

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programming Exercises 915

Debugging Exercises 916
Game Zone 916
CaseProblems 918

Xix

APPENDIX A Working with the Java Platform 919

Learning about the Java SE Development Kit 920
Configuring Windows toUsethe JDK 920
Finding the Command Prompt 921
Command Prompt Anatomy 921
Changing Directories 921
Setting the cTass and classpath Variables 922
Changing aFile'sName 922
Compiling and Executing a Java Program 923
KeyTerms e 923

APPENDIX B Data Representation 925

Understanding Numbering Systems 926
Representing Numeric Values 927
Representing Character Values 929
KeyTerms e 930

APPENDIX C Formatting Output 931

Rounding Numbers 932
Using the printf(Method 933
Specifying a Number of Decimal Places to
Display with printf() 936
Specifying a Field Size with printf(. 937
Using the Optional Argument Index with printf() 938
Using the DecimalFormat Class 939
KeyTerms e 940

APPENDIX D Generating Random Numbers 941

Understanding Computer-Generated Random Numbers 942
Using the Math.random() Method 943
Usingthe RandomClass 944
KeyTerms 947

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX E Javadoc 949

The Javadoc Documentation Generator 950
Javadoc Comment Types 950

Generating Javadoc Documentation 952
. XX Specifying Visibility of Javadoc Documentation 955

KeyTerms 96

Glossary957
Index979

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

Java Programming, Eighth Edition, provides the beginning programmer with a guide to
developing applications using the Java programming language. Java is popular among
professional programmers because it can be used to build visually interesting graphical user
interface (GUI) and Web-based applications. Java also provides an excellent environment for
the beginning programmer—a student can quickly build useful programs while learning the
basics of structured and object-oriented programming techniques.

This textbook assumes that you have little or no programming experience. It provides a solid
background in good object-oriented programming techniques and introduces terminology
using clear, familiar language. The programming examples are business examples; they do not
assume a mathematical background beyond high-school business math. In addition, the
examples illustrate only one or two major points; they do not contain so many features that
you become lost following irrelevant and extraneous details. Complete, working programs
appear frequently in each chapter; these examples help students make the transition from the
theoretical to the practical. The code presented in each chapter can also be downloaded from
the publisher’s Web site, so students can easily run the programs and experiment with
changes to them.

The student using Java Programming, Eighth Edition, builds applications from the bottom up
rather than starting with existing objects. This facilitates a deeper understanding of the
concepts used in object-oriented programming and engenders appreciation for the existing
objects students use as their knowledge of the language advances. When students complete
this book, they will know how to modify and create simple Java programs, and they will have
the tools to create more complex examples. They also will have a fundamental knowledge of
object-oriented programming, which will serve them well in advanced Java courses or in
studying other object-oriented languages such as C++, C#, and Visual Basic.

Organization and Coverage

Java Programming, Eighth Edition, presents Java programming concepts, enforcing good
style, logical thinking, and the object-oriented paradigm. Objects are covered right from the
beginning, earlier than in many other textbooks. You create your first Java program in
Chapter 1. Chapters 2, 3, and 4 increase your understanding of how data, classes, objects,
and methods interact in an object-oriented environment.

Chapters 5 and 6 explore input and repetition structures, which are the backbone of
programming logic and essential to creating useful programs in any language. You learn the
special considerations of string and array manipulation in Chapters 7, 8, and 9.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features

Chapters 10, 11, and 12 thoroughly cover inheritance and exception handling. Inheritance is
the object-oriented concept that allows you to develop new objects quickly by adapting the
features of existing objects; exception handling is the object-oriented approach to handling
errors. Both are important concepts in object-oriented design. Chapter 13 provides
information on handling files so you can permanently store and retrieve program output.

. ol Chapters 14, 15, and 16 introduce GUI Swing components (Java’s visually pleasing,
user-friendly widgets), their layout managers, and graphics.

Features

The following features are new for the Eighth Edition:
e JAVA 8E: All programs have been tested using Java 8e, the newest edition of Java.

e WINDOWS 8.1: All programs have been tested in Windows 8.1, and all screen shots have
been taken in this new environment.

e DATE AND TIME CLASSES: This edition provides thorough coverage of the java.time
package, which is new in Java 8e.

o ON-SCREEN KEYBOARD: This edition provides instructions for displaying and using an
on-screen keyboard with either a touch screen or a standard screen.

o MODERNIZED GRAPHICS OUTPUT: The chapter on graphics (Chapter 16) has been
completely rewritten to focus on Swing component graphics production using the
paintComponent() method.

o MODERNIZED OVERRIDING: The @0verride tag is introduced.

o EXPANDED COVERAGE OF THE EQUALSQ) METHOD: The book provides a thorough
explanation of the difference between overloading and overriding the equals() method.

o PROGRAMMING EXERCISES: Each chapter contains several new programming exercises
not seen in previous editions. All exercises and their solutions from the previous edition
that were replaced in this edition are still available in the Instructor’s Resource Kit.

Additionally, Java Programming, Eighth Edition, includes the following features:

e OBJECTIVES: Each chapter begins with a list of objectives so you know the topics that will
be presented in the chapter. In addition to providing a quick reference to topics covered,
this feature provides a useful study aid.

e YOUDOIT: In each chapter, step-by-step exercises help students create multiple working
programs that emphasize the logic a programmer uses in choosing statements to include.
These sections provide a means for students to achieve success on their own—even those
in online or distance learning classes.

e NOTES: These highlighted tips provide additional information—for example, an
alternative method of performing a procedure, another term for a concept, background
information on a technique, or a common error to avoid.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features

o EMPHASIS ON STUDENT RESEARCH: The student frequently is directed to the Java Web
site to investigate classes and methods. Computer languages evolve, and programming
professionals must understand how to find the latest language improvements. This book
encourages independent research.

e FIGURES: Each chapter contains many figures. Code figures are most frequently 25 lines i .
or fewer, illustrating one concept at a time. Frequent screen shots show exactly how
program output appears. Callouts appear where needed to emphasize a point.

e COLOR: The code figures in each chapter contain all Java keywords in blue. This helps
students identify keywords more easily, distinguishing them from programmer-selected
names.

e FILES: More than 200 student files can be downloaded from the publisher’s Web site. Most
files contain the code presented in the figures in each chapter; students can run the code for
themselves, view the output, and make changes to the code to observe the effects. Other
files include debugging exercises that help students improve their programming skills.

o TWO TRUTHS & A LIE: A short quiz reviews each chapter section, with answers provided.
This quiz contains three statements based on the preceding section of text—two
statements are true and one is false. Over the years, students have requested answers to
problems, but we have hesitated to distribute them in case instructors want to use
problems as assignments or test questions. These true—false quizzes provide students with
immediate feedback as they read, without “giving away” answers to the multiple-choice
questions and programming exercises.

e DONTDOIT: This section at the end of each chapter summarizes common mistakes and
pitfalls that plague new programmers while learning the current topic.

e KEY TERMS: Each chapter includes a list of newly introduced vocabulary, shown in the
order of appearance in the text. The list of key terms provides a short review of the major
concepts in the chapter.

e SUMMARIES: Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter. This feature provides a concise means for
students to check their understanding of the main points in each chapter.

o REVIEW QUESTIONS: Each chapter includes 20 multiple-choice questions that serve as a
review of chapter topics.

e GAME ZONE: Each chapter provides one or more exercises in which students can create
interactive games using the programming techniques learned up to that point; 70 game
programs are suggested in the book. The games are fun to create and play; writing them
motivates students to master the necessary programming techniques. Students might
exchange completed game programs with each other, suggesting improvements and
discovering alternate ways to accomplish tasks.

e CASES: Each chapter contains two running case problems. These cases represent projects
that continue to grow throughout a semester using concepts learned in each new chapter.
Two cases allow instructors to assign different cases in alternate semesters or to divide
students in a class into two case teams.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Instructor Resources

e GLOSSARY: This edition contains an alphabetized list of all key terms identified in the
book, along with their definitions.

e APPENDICES: This edition includes useful appendices on working with the Java platform,
data representation, formatting output, generating random numbers, and creating Javadoc

. comments.
XXIV

e QUALITY: Every program example, exercise, and game solution was tested by the author
and then tested again by a quality assurance team using Java Standard Edition (SE) 8, the
most recent version available.

CourseMate

The more you study, the better the results. Make the most of your study time by accessing
everything you need to succeed in one place. Read your textbook, take notes, review
flashcards, watch videos, and take practice quizzes online. CourseMate goes beyond the book
to deliver what you need! Learn more at www.cengage.com/coursemate.

The Java Programming CourseMate includes:

e Debugging Exercises: Four error-filled programs accompany each chapter. By
debugging these programs, students can gain expertise in program logic in general and
the Java programming language in particular.

e Video Lessons: Each chapter is accompanied by at least three video lessons that help to
explain important chapter concepts. These videos were created and narrated by the
author.

e Interactive Study Aids: An interactive eBook, quizzes, flashcards, and more!

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly at www.CengageBrain.com.

Instructor Resources

The following teaching tools are available for download at our Instructor Companion Site.
Simply search for this text at sso.cengage.com. An instructor login is required.

e Electronic Instructor’s Manual: The Instructor’s Manual that accompanies this
textbook contains additional instructional material to assist in class preparation,
including items such as Overviews, Chapter Objectives, Teaching Tips, Quick
Quizzes, Class Discussion Topics, Additional Projects, Additional Resources, and Key
Terms. A sample syllabus is also available. Additional exercises in the Instructor’s
Manual include:

o Tough Questions: Two or more fairly difficult questions that an applicant
might encounter in a technical job interview accompany each chapter. These
questions are often open-ended; some involve coding and others might involve
research.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Acknowledgments

o Up for Discussion: A few thought-provoking questions concerning programming in
general or Java in particular supplement each chapter. The questions can be used to
start classroom or online discussions, or to develop and encourage research, writing,
and language skills.

o Programming Exercises and Solutions: Each chapter is accompanied by several
programming exercises to supplement those offered in the text. Instructors can use
these exercises as additional or alternate assignments, or as the basis for lectures.

e Test Bank: Cengage Learning Testing Powered by Cognero is a flexible, online system
that allows you to:

o Author, edit, and manage test bank content from multiple Cengage Learning
solutions.

o Create multiple test versions in an instant.
o Deliver tests from your LMS, your classroom, or anywhere you want.

e PowerPoint Presentations: This text provides PowerPoint slides to accompany each
chapter. Slides may be used to guide classroom presentations, to make available to
students for chapter review, or to print as classroom handouts. Files are provided for every
figure in the text. Instructors may use the files to customize PowerPoint slides, illustrate
quizzes, or create handouts.

e Solutions: Solutions to “You Do It” exercises and all end-of-chapter exercises are
available. Annotated solutions are provided for some of the multiple-choice Review
Questions. For example, if students are likely to debate answer choices or not understand
the choice deemed to be the correct one, a rationale is provided.

Acknowledgments

I would like to thank all of the people who helped to make this book a reality, including Dan
Seiter, Development Editor; Alyssa Pratt, Senior Content Developer; Carmel Isaac, Content
Project Manager; and Chris Scriver and Danielle Shaw, quality assurance testers. I am lucky to
work with these professionals who are dedicated to producing high-quality instructional
materials.

I am also grateful to the reviewers who provided comments and encouragement during this
book’s development, including Bernice Cunningham, Wayne County Community College
District; Bev Eckel, lowa Western Community College; John Russo, Wentworth Institute of
Technology; Leslie Spivey, Edison Community College; and Angeline Surber, Mesa
Community College.

Thanks, too, to my husband, Geoff, for his constant support and encouragement. Finally, this
book is dedicated to the newest Farrell, coming March 2015. As this book goes to production,
I don’t know your name or even your gender, but I do know that I love you.

Joyce Farrell

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Read This Before
You Begin

The following information will help you as you prepare to use this textbook.

. XXVi

To the User of the Data Files

To complete the steps and projects in this book, you need data files that have been created
specifically for this book. Your instructor will provide the data files to you. You also can
obtain the files electronically from www.CengageBrain.com. Find the ISBN of your title on the
back cover of your book, then enter the ISBN in the search box at the top of the Cengage
Brain home page. You can find the data files on the product page that opens. Note that
you can use a computer in your school lab or your own computer to complete the exercises
in this book.

Using Your Own Computer

To use your own computer to complete the steps and exercises, you need the following:

e Software: Java SE 8, available from www.oracle.com/technetwork/java/index.html. Although
almost all of the examples in this book will work with earlier versions of Java, this book was
created using Java 8. The book clearly points out the few cases when an example is based on
Java 7 and will not work with earlier versions of Java. You also need a text editor, such as
Notepad. A few exercises ask you to use a browser for research.

e Hardware: If you are using Windows 8, the Java Web site suggests at least 128 MB of
memory and at least 181 MB of disk space. For other operating system requirements, see
http://java.com/en/download/help.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features

This text focuses on helping students become better programmers and understand
Java program development through a variety of key features. In addition to Chapter
Objectives, Summaries, and Key Terms, these useful features will help students

regardless of their learning styles. XXVii .

Creating Java Programs

YOU DO IT sections walk
students through program
development step by step.

”«\ You Do It
-E\ Your First Application

Now that you understand the basics of an application written in Java, you are ready to
enter your own Java application into a text editor. It is a tradition among program-
mers that the first program you write in any language produces “Hello, world"” as its
output. You will create such a program now. You can use any text editor, such as
Notepad or TextPad, or a development envi

It is best to use the simplest available text

word-processing programs save documents a
ﬂ such as font styles and margin settings, which Running a Java Application and Correcting Logic Errors

1. Start the text editor, and then open

with the same name is still stored on your computer. Before the new source code can execute,
2. Type the class header as follows:

you must do the following:
public class Hello 1. Save the file with the changes (using the same filename).

In this example, the class name is 2. Recompile the class with the javac command.
want for the class. If you choose Hel
Hello, and not as hello, because Jav

3. Interpret the class bytecode and execute the class using the java command.
Figure 1-19 shows the new output.
3. Press Enter once, type {, press Ente ¢ P =

main() method between these curly When you recompile a class, the original
convention used in this book is to pla version of the compiled file with the .class C="Javadiava First
align opening and closing curly brace extension is replaced, and the original e anyrave

makes your code easier to read. version no longer e).(ists. When you modify a
class, you must decide whether you want to

4. As shown in the shaded portion of Fi; retain the original version. If you do, you

g! ¥ ¥
een the curly braces, and then must give the new version a new class name
and a new filename. Figure 1-19 Execution of modified First class
NOTES prov| d e Once in a while, when you make a change to a Java class and then recompile and execute it, the old version

still runs. The simplest solution s to delete the .class file and compile again. Programmers call this creating a

additional information— void mainCString[] clean buid.
for example, another
location in the book t
expands on a topic, or a

common error to watch

WJava application

C=\Java>

) method shell for the He

ecting Logic Errors

s syntax errors, a second kind of error occurs when the syntax of the program is
and the program compiles but produces incorrect results when you execute it. This
f error is a logic error, which is often more difficult to find and resolve. For example,
1-20 shows the output of the execution of a successfully compiled program
FirstBadOutput. If you glance at the output too quickly, you might not notice that
misspelled. The compiler does not find spelling errors within a literal string; it is
hate to produce any combination of letters
AT S adiamaskde

out for.

The author does an awesome
job: the examples, problems,
and material are very easy to
understand!

—Bernice Cunningham,

Wayne County Community
College District

B Command Prompt & ey

:\Java>java FirstBadOutput
First Jav application

VIDEO LESSONS help
explain important chapter
concepts. Videos are part

of the text's enhanced e QU of Farsttadoutout
CourseMate site.

\Java>

Copyright 2016 Ce
Editorial review has dee

¢ Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
ght to remove additional content at any time if subsequent rights restrictions require it

that any suppressed content does not materially affect the overall learning experience. Ceng; Learning reserves th

FEATURES

XXViii

Analyzing a Java Application that Produces Console Output

public class AnyClasshame
public static void main(String[] args)

Jrennny

}

Figure 1-8 Shell code

Saving a Java Class

When you write a Java class, you must save it using a writable storage medit
DVD, or USB device. In Java, if a class is pubTic (that is, if you use the pub;

before the class name), you must save the class in a file with exactly the s

extension. For example, the First class must be stored in a file nameg

name and filename must match exactly, including the use of upperc

characters. If the extension is not java, the Java compiler does no

containing a Java class. Appendix A contains additional informalilan saving a Java
application.

Analyzing a Java Application that Produces Console Output

. In the method header public static void main(String[] args), the word
public is an access specifier.

~

. In the method header public static void main(String[] args), the word
static means that a method is accessible and usable, even though no objects
of the class exist.

w

. In the method header public static void main(String[] args), the word
void means that the main() method is an empty method.

-pal[ea s 31 UaUM anjen Aue Ljas
10U S30P POLFAW ()utew 3y} JeU} SUESL PLOA PIOM 3 (sBe [16uLIISIuLewpLoA
13835 D1 (qnd JIPE3Y POYIA By} U] "E4 SI UBWAIEIS 3S[e} AL

TWO TRUTHS & A LIE quizzes appear
after each chapter section, with

answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are

true and one is false. Answers give
immediate feedback without “giving away”
answers to the multiple-choice questions
and programming problems later in

the chapter. Students also have the option
to take these quizzes electronically
through the enhanced CourseMate site. —

" Save, complle, and execute the program. Now, the fractional portion of the
result is omitted again. That's because the result of sum / 2 is calculated first,
and the result is an integer. Then, the whole-number result is cast to a double
and assigned to a double—but the fractional part of the answer was already
lost and casting is too late. Remove the newly added parentheses, save the
program, compile it, and execute it again to confirm that the fractional part of
the answer is reinstated.

8. As an alternative to the explicit cast in the division statement in the
ArithmeticDemo program, you could write the average calculation as follows:

average = sum / 2.0;
In this calculation, when the integer sumis divided by the doub1e constant 2.0,
the result is a double. The result then does not require any cast to be
assigned to the double average without loss of data. Try this in your pro-
gram.

9. Go to the Java Web site (www.oracle.com/technetwork/java/index.html),
select Java APIs, and then select Java SE 8. Scroll through the list of All
Classes, and select PrintStream, which is the data type for the out object

used with the print1n() method. Scroll down to view the list of methods in the
Method Summary. As you did in a previous exercise, notice the many versions
of the print() and printin() methods, including ones that accept a String,
an int, and a Tong. Notice, however, that no versions accept a byte or a
short. That's because when a byte or short is sent to the print() or
printIn() method, it is automatically promoted to an int, so that version
of the method is used.

DON'T DO IT sections at the end
of each chapter list advice for

avoiding common programming erro

Don’t Do It

 Don't mispronounce “integer.” People who are unfamiliar with the term often say
“interger,” inserting an extra r.

Using the Scanner Class to Accept Keyboard Input

Itis legal to write a single prompt that requests multiple input values—for example, “Please
enter your age, area code, and zip code >>”. The user could then enter the three values
separated with spaces, tabs, or Enter key presses. The values would be interpreted as separate
tokens and could be retrieved with three separate nextInt() method calls. However, asking a
user to enter multiple values often leads to mistakes. This book will follow the practice of
using a separate prompt for each input value required.

Pitfall: Using nextLine() Following One of the
Other Scanner Input Methods

You can encounter a problem when you use one of the numeric Scanner class retrieval
methods or the next() method before you use the nextLine() method. Consider the

program in Figure 2-19. It is identical to the one in Figure 2-17, except that the user s asked
for an age before being asked for a name. (See shading) Figure 2-20 shows a typical execution.

Don't Do It

import java.util.Scanner;
public Class GetUserInfoz

public static void main(String[] args)
{

String name;
int age;
Scanner inputDevi
System.out.print:
age = inputDevice.
t.pr

an, nan
+age + " years old.");

" and you are "
}
¥

Figure 219 The GetUserInfo? class

Figure 220 Typical execution of the GetUserInfo2 program

e Don't attempt to assign a literal constant floating-point number, such as 2.5, to a float
without following the constant with an uppercase or lowercase F. By default, constant
floating-point values are doubes.

Don't try to use a Java keyword as an identifier for a variable or constant. Table 1-1 in
Chapter 1 contains a list of Java keywords.

Don't attempt to assign a constant value under ~2,147,483,648 or over +2,147,483,647 toa
Tong variable without following the constant with an uppercase or lowercase L. By default,
constant integers are ints, and a value under —2,147,483,648 or over 2,147,483,647 is too
large to be an int.

THE DON'T DO IT ICON illustrates
how NOT to do something—for
example, having a dead code

path in a program. This icon

provides a visual jolt to the student,
emphasizing that particular figures
are NOT to be emulated and making
students more careful to recognize
problems in existing cod

Assessment

I found the author’s explanation of
difficult topics to be very clear and
thorough. PROGRAMMING EXERCISES provide
opportunities to practice concepts. These XXix
exercises increase in difficulty and allow
students to explore each major

—Leslie Spivey,
Edison Community College

programming concept presented in the
chapter. Additional programming
exercises are available in the Instructor's
Resource Kit.

Review Questions

Review Questions

A sequence of characters enclosed within double quotation marks

is a .

a. symbolic string c. prompt

b. literal string d. command

To create a String object, you can use the keyword — before the
constructor call, but you are not required to use this format.

a. object ¢ char

b. create d. new

A String variable name is a

a. reference c. constant
b. value d. literal
The term that programmers use to describe objects that ¢ Using Ithods, Classes, and Objects

is

2. irrevocable ¢ fmmutable 20, If you use the automlally supplied default constructor when you create an
b. nonvolatile d. stable object, .
Suppose that you declare two String objects as: a. numeric fields ard¥et to 0 (zero) ¢ Boolean fields are set to true
String wordl = new String("happy"); b. character fields al¥ set to blank d. Al of these are true.
String word2; 174
When you ask a user to enter a value for word2, if the user .
wordl == word2 is Exercises
o true . illegal @ Programming Exercises
b false d. unknown — 8 g
If you declare two String objects as: 1. Suppose that you have created a program with only the following variables.
String wordl = new String("happy™); int a - 5;
String word2 = new String("happy™); int b = 6;
the value of word1. equalsword2) is) Suppose that you also have a method with the following header:
. public static void mathMethod(int a)

a. true c. illegal
b. false & unknown Which of the following method calls are legal?
The method that determines whether two String objects a. mathMethod(a); f. mathMethod(12.78);
of case, is b. mathMethod(b) ; g. mathMethod(29987L) ;
a equalsNoCase) ¢ equalsign c. mathMethod(a +b); h mathMethod () ;
b. toUpperCase() 4 equalsO d. mathMethod(a, b); i. mathMethod(x);

e. mathMethod(2361); j. mathMethod(a / b);

2. Suppose that you have created a program with only the following variables.
int age = 34;
int weight = 180;
I double height = 5.9;

Suppose that you also have a method with the following header:
public static void calculate(int age, double size)

Which of the following method calls are legal?

a. calculate(age, weight); f. calculate(12, 120.2);
REVIEW QUESTIONS test b, calculatecage, heights: ¢ calcinatetage, size);
H c. calculate(weight, height); h. calculate(2, 3);
student comprehension of the A calentateCheight, age); i, calculateCage);
e. calculate(45.5, 120); j. calculate(weight, weight);

major ideas and techniques
presented. Twenty questions
follow each chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SSESSMEN

XXX

_mm Using Data

<

Case Problems

Carly’s Catering provides meals for parties and special events. Write a program that
prompts the user for the number of guests attending an event and then computes
the total price, which is $35 per person. Display the company motto with the border

DEBUGGING EXERCISES are
included with each chapter because
examining programs critically and
closely is a crucial programming skill.

that you created in the CarlysMotto2 class in Chapter 1, and then display the
number of guests, price per guest, and total price. Also display a message that
indicates true or false depending on whether the job is classified as a large event—
an event with 50 or more guests. Save the file as CarlysEventPrice.java.

Students can download these exercises
at www.CengageBrain.com and through
e CourseMate available for this text.

These files are also available to
instructors through sso.cengage.com.

2. Sammy's Seashore Supplies rents beach equipment such as kayaks, canoes, beach
chairs, and umbrellas to tourists. Write a program that prompts the user for the
number of minutes he rented a piece of sports equipment. Compute the rental cost
as $40 per hour plus $1 per additional minute. (You might have surmised already
that this rate has a logical flaw, but for now, calculate rates as described here. You
can fix the problem after you read the chapter on decision making) Display
Sammy’s motto with the border that you created in the SammysMotto2 class in
Chapter 1. Then display the hours, minutes, and total price. Save the file as
SammysRentalPrice.java.

Exercises ﬁ
Debugging Exercises

. Each of the following files in the Chapter05 folder of your downloadable student files
has syntax and/or logic errors. In each case, determine the problem and fix the
program. After you correct the errors, save each file using the same filename
preceded with Fix. For example, save DebugFivel java as FixDebugFivel java.

%

a. DebugFivel java
b. DebugFive2.java

c. DebugFive3.java
d. DebugFived.java

5 Game Zone

1. In Chapter 1, you created a class called RandomGuess. In this game, players guess
a number, the application generates a random number, and players determine
whether they were correct. Now that you can make decisions, modify the applica-
tion so it allows a player to enter a guess before the random number is displayed,
and then displays a message indicating whether the player’s guess was correct, too
high, or too low. Save the file as RandomGuess2.java. (After you finish the next
chapter, you will be able to modify the application so that the user can continue
to guess until the correct answer is entered.)

CASE PROBLEMS provide opportunities

to build more detailed programs that
continue to incorporate increasing
functionality throughout the book. 2

Create a lottery game application. Generate three random numbers (see Appendix D
for help in doing s0), each between 0 and 9. Allow the user to guess three numbers.
Compare each of the user's guesses to the three random numbers and display a
message that includes the user’s guess, the randomly determined three-digit
number, and the amount of money the user has won as follows:

Matching Numbers Award ($)
Any one matching 10

Two matching 100

Three matching, not in order 1,000
Three matching in exact order 1,000,000
No matches 0

Make certain that your application accommodates repeating digits. For example, if a
user guesses 1,2, and 3, and the randomly generated digits are 1, 1, and 1, do not give
the user credit for three correct guesses—ijust one. Save the file as Lottery.java.

GAME ZONE EXERCISES are included
at the end of each chapter. Students can
create games as an additional entertaining

way to understand key pr
concepts.

gramming

Creating Java
Programs

In this chapter, you will:

©)

Define basic programming terminology
Compare procedural and object-oriented programming

@ @

Describe the features of the Java programming language

©)

Analyze a Java application that produces console output
Compile a Java class and correct syntax errors

@ @

Run a Java application and correct logic errors
Add comments to a Java class

©)

Create a Java application that produces GUI output
Find help

@ ©

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java Programs

Learning Programming Terminology

A computer program is a set of instructions that you write to tell a computer what to do.
Computer equipment, such as a monitor or keyboard, is hardware, and programs are
software. A program that performs a task for a user (such as calculating and producing
paychecks, word processing, or playing a game) is application software; a program that
manages the computer itself (such as Windows or Linux) is system software. The logic
behind any computer program, whether it is an application or system program, determines
the exact order of instructions needed to produce desired results. Much of this book describes
how to develop the logic to create application software.

All computer programs ultimately are converted to machine language. Machine language,
or machine code, is the most basic set of instructions that a computer can execute. Each type
of processor (the internal hardware that handles computer instructions) has its own set of
machine language instructions. Programmers often describe machine language using 1s and
0Os to represent the on-and-off circuitry of computer systems.

The system that uses only 1s and Os is the binary numbering system. Appendix B describes the binary
system in detail. Later in this chapter, you will learn that bytecode is the name for the binary code created
when Java programs are converted to machine language.

Machine language is a low-level programming language, or one that corresponds closely to a
computer processor’s circuitry. Low-level languages require you to use memory addresses for
specific machines when you create commands. This means that low-level languages are

difficult to use and must be customized for every type of machine on which a program runs.

Fortunately, programming has evolved into an easier task because of the development of
high-level programming languages. A high-level programming language allows you to use
a vocabulary of reasonable terms, such as read, write, or add, instead of the sequences of
1s and Os that perform these tasks. High-level languages also allow you to assign single-word,
intuitive names to areas of computer memory where you store data. This means you can use
identifiers such as hoursWorked or rateOfPay, rather than having to remember their memory
locations. Currently, over 2,000 high-level programming languages are available to
developers; Java is one of them.

Each high-level language has its own syntax, or rules about how language elements are
combined correctly to produce usable statements. For example, depending on the specific
high-level language, you might use the verb print or write to produce output. All languages
have a specific, limited vocabulary (the language’s keywords) and a specific set of rules for
using that vocabulary. When you are learning a computer programming language, such as
Java, C++, or Visual Basic, you really are learning the vocabulary and syntax for that language.

Using a programming language, programmers write a series of program statements, similar
to English sentences, to carry out the tasks they want the program to perform. Program
statements are also known as commands because they are orders to the computer, such as
“output this word” or “add these two numbers.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Programming Terminology

After the program statements are written, high-level language programmers use a computer
program called a compiler or interpreter to translate their language statements into machine
language. A compiler translates an entire program before carrying out any statements, or
executing them, whereas an interpreter translates one program statement at a time,
executing a statement as soon as it is translated.

Whether you use a compiler or interpreter often depends on the programming language you use. For 3 .
example, C++ is a compiled language, and Visual Basic is an interpreted language. Each type of translator

has its supporters; programs written in compiled languages execute more quickly, whereas programs

written in interpreted languages can be easier to develop and debug. Java uses the best of both technolo-

gies: a compiler to translate your programming statements and an interpreter to read the compiled code line

by line when the program executes (also called at run time).

Compilers and interpreters issue one or more error messages each time they encounter an
invalid program statement—that is, a statement containing a syntax error, or misuse of the
language. Examples of syntax errors include misspelling a keyword or omitting a word that a
statement requires. When a syntax error is detected, the programmer can correct the error
and attempt another translation. Repairing all syntax errors is the first part of the process
of debugging a program—freeing the program of all flaws or errors, also known as bugs.
Figure 1-1 illustrates the steps a programmer takes while developing an executable program.
You will learn more about debugging Java programs later in this chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java Programs

|
v

Plan program logic

| .
Write program language statements

that correspond to the logic

Use translating software (a compiler or
interpreter) that translates programming
language statements to machine language

Debugging process

Can all statements
be successfully
translated?

Examine list of
syntax errors

\/

Debugging process

Execute the program

!

Examine
program output

Are there runtime Yes

or output errors?

No

Figure 1-1 The program development process

As Figure 1-1 shows, you might write a program with correct syntax that still contains logic
errors. A logic error is a bug that allows a program to run, but that causes it to operate
incorrectly. Correct logic requires that all the right commands be issued in the appropriate
order. Examples of logic errors include multiplying two values when you meant to divide

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Programming Terminology

them or producing output prior to obtaining the appropriate input. When you develop a
program of any significant size, you should plan its logic before you write any program
statements.

Correcting logic errors is much more difficult than correcting syntax errors. Syntax errors are
discovered by the language translator when you compile a program, but a program can be free T-
of syntax errors and execute while still retaining logic errors. Often you can identify logic

errors only when you examine a program'’s output. For example, if you know an employee’s

paycheck should contain the value $4,000, but when you examine a payroll program’s output

you see that it holds $40, then a logic error has occurred. Perhaps an incorrect calculation was

performed, or maybe the hours worked value was output by mistake instead of the net pay

value. When output is incorrect, the programmer must carefully examine all the statements

within the program, revise or move the offending statements, and translate and test the

program again.

Just because a program produces correct output does not mean it is free from logic errors. For example,
suppose that a program should multiply two values entered by the user, that the user enters two 2s, and the
output is 4. The program might actually be adding the values by mistake. The programmer would discover

the logic error only by entering different values, such as 5 and 7, and examining the result.

Programmers call some logic errors semantic errors. For example, if you misspell a programming
language word, you commit a syntax error, but if you use a correct word in the wrong context, you commit a
semantic error.

Learning Programming Terminology

In each “Two Truths & a Lie” section, two of the numbered statements are true, and one
is false. Identify the false statement and explain why it is false.

1. Unlike a low-level programming language, a high-level programming language
allows you to use a vocabulary of reasonable terms instead of the sequences of
on-and-off switches that perform the corresponding tasks.

2. A syntax error occurs when you misuse a language; locating and repairing all
syntax errors is part of the process of debugging a program.

3. Logic errors are fairly easy to find because the software that translates a program
finds all the logic errors for you.

‘jndino s,weidoid e Suluiwexs Ag Ajuo pasanodsip ag Ajjensn ued
S104J9 2130] INQ ‘SJ0.4J8 XeUAS Spuly Joje|sueJ} aden3ue| Y "S# SI JusWale]S as|ey) ay |

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java Programs

Comparing Procedural and Object-Oriented
Programming Concepts

Two popular approaches to writing computer programs are procedural programming and

.: object-oriented programming.
6

Procedural Programming

Procedural programming is a style of programming in which operations are executed one
after another in sequence. In procedural applications, you create names for computer
memory locations that can hold values—for example, numbers and text—in electronic
form. The named computer memory locations are called variables because they hold values
that might vary. For example, a payroll program might contain a variable named rateOfPay.
The memory location referenced by the name rate0OfPay might contain different values

(a different value for every employee of the company) at different times. During the execution
of the payroll program, each value stored under the name rateOfPay might have many
operations performed on it—for example, the value might be read from an input device,

be multiplied by another variable representing hours worked, and be printed on paper.

For convenience, the individual operations used in a computer program are often grouped
into logical units called procedures. For example, a series of four or five comparisons and
calculations that together determine a person’s federal withholding tax value might be
grouped as a procedure named calculateFederalWithholding. A procedural program
defines the variable memory locations and then calls a series of procedures to input,
manipulate, and output the values stored in those locations. When a program calls a
procedure, the current logic is temporarily abandoned so that the procedure’s commands can
execute. A single procedural program often contains hundreds of variables and procedure
calls. Procedures are also called modules, methods, functions, and subroutines. Users of
different programming languages tend to use different terms. As you will learn later in this
chapter, Java programmers most frequently use the term method.

Object-Oriented Programming

Object-oriented programming is an extension of procedural programming in which you take
a slightly different approach to writing computer programs. Writing object-oriented
programs involves:

e Creating classes, which are blueprints for objects
e Creating objects, which are specific instances of those classes

e Creating applications that manipulate or use those objects

Programmers use 0O as an abbreviation for object-oriented; it is pronounced “oh oh.” Object-oriented
programming is abbreviated OOP, and pronounced to rhyme with soup.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Comparing Procedural and Object-Oriented Programming Concepts

Originally, object-oriented programming was used most frequently for two major types of
applications:

o Computer simulations, which attempt to mimic real-world activities so that their
processes can be improved or so that users can better understand how the real-world

processes operate . .

e Graphical user interfaces, or GUIs (pronounced “gooeys”), which allow users to interact
with a program in a graphical environment

Thinking about objects in these two types of applications makes sense. For example, a city
might want to develop a program that simulates traffic patterns to help prevent traffic tie-ups.
Programmers would create classes for objects such as cars and pedestrians that contain their
own data and rules for behavior. For example, each car has a speed and a method for changing
that speed. The specific instances of cars could be set in motion to create a simulation of a real
city at rush hour.

Creating a GUI environment for users is also a natural use for object orientation. It is easy to
think of the components a user manipulates on a computer screen, such as buttons and scroll
bars, as similar to real-world objects. Each GUI object contains data—for example, a button
on a screen has a specific size and color. Each object also contains behaviors—for example,
each button can be clicked and reacts in a specific way when clicked. Some people consider
the term object-oriented programming to be synonymous with GUI programming, but object-
oriented programming means more. Although many GUI programs are object oriented, not
all object-oriented programs use GUI objects. Modern businesses use object-oriented design
techniques when developing all sorts of business applications, whether they are GUI
applications or not. In the first 13 chapters of this book, you will learn object-oriented
techniques that are appropriate for any program type; in the last chapters, you will apply what
you have learned about those techniques specifically to GUI applications.

Understanding object-oriented programming requires grasping three basic concepts:
e Encapsulation as it applies to classes as objects
e Inheritance

e DPolymorphism

Understanding Classes, Objects, and Encapsulation

In object-oriented terminology, a class is a term that describes a group or collection of
objects with common properties. In the same way that a blueprint exists before any houses
are built from it, and a recipe exists before any cookies are baked from it, a class definition
exists before any objects are created from it. A class definition describes what attributes its
objects will have and what those objects will be able to do. Attributes are the characteristics
that define an object; they are properties of the object. When you learn a programming
language such as Java, you learn to work with two types of classes: those that have already
been developed by the language’s creators and your own new, customized classes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Java Programs

An object is a specific, concrete instance of a class. Creating an instance is called
instantiation. You can create objects from classes that you write and from classes written by
other programmers, including Java’s creators. The values contained in an object’s properties
often differentiate instances of the same class from one another. For example, the class

.: Automobile describes what Automobile objects are like. Some properties of the Automobile
8

class are make, model, year, and color. Each Automob1iTe object possesses the same attributes,
but not necessarily the same values for those attributes. One Automobile might be a 2010
white Ford Taurus and another might be a 2015 red Chevrolet Camaro. Similarly, your dog
has the properties of all Dogs, including a breed, name, age, and whether its shots are current.
The values of the properties of an object are referred to as the object’s state. In other words,
you can think of objects as roughly equivalent to nouns, and of their attributes as similar to
adjectives that describe the nouns.

When you understand an object’s class, you understand the characteristics of the object. If
your friend purchases an Automobile, you know it has a model name, and if your friend gets a
Dog, you know the dog has a breed. Knowing what attributes exist for classes allows you to ask
appropriate questions about the states or values of those attributes. For example, you might
ask how many miles the car gets per gallon, but you would not ask whether the car has had
shots. Similarly, in a GUI operating environment, you expect each component to have
specific, consistent attributes and methods, such as a window having a title bar and a close
button, because each component gains these properties as a member of the general class of
GUI components. Figure 1-2 shows the relationship of some Dog objects to the Dog class.

By convention, programmers using Java begin their class names with an uppercase letter. Thus, the class
that defines the attributes and methods of an automobile would probably be named Automobi Te, and the
class for dogs would probably be named Dog. However, following this convention is not required to produce
a workable program.

Dog class definition Dog class instances (objects)

Y

Every Dog that is
created will have
a:

Name
Age

Ginger Bowser Roxy
Breed 6 2 1

Akita Retriever Beagle
Shot status Up to date Up to date Up to date

Figure 1-2 Dog class definition and some objects created from it

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Comparing Procedural and Object-Oriented Programming Concepts

Besides defining properties, classes define methods their objects can use. A method is a
self-contained block of program code that carries out some action, similar to a procedure in a
procedural program. An Automobile, for example, might have methods for moving forward,
moving backward, and determining the status of its gas tank. Similarly, a Dog might have
methods for walking, eating, and determining its name, and a program’s GUI components

might have methods for maximizing and minimizing them as well as determining their size. 9 .
In other words, if objects are similar to nouns, then methods are similar to verbs.

In object-oriented classes, attributes and methods are encapsulated into objects.
Encapsulation refers to two closely related object-oriented notions:

e Encapsulation is the enclosure of data and methods within an object. Encapsulation allows
you to treat all of an object’s methods and data as a single entity. Just as an actual dog
contains all of its attributes and abilities, so would a program’s Dog object.

e Encapsulation also refers to the concealment of an object’s data and methods from outside
sources. Concealing data is sometimes called information hiding, and concealing how
methods work is implementation hiding; you will learn more about both terms in the
chapter “Using Methods, Classes, and Objects.” Encapsulation lets you hide specific object
attributes and methods from outside sources and provides the security that keeps data and
methods safe from inadvertent changes.

If an object’s methods are well written, the user can be unaware of the low-level details of how
the methods are executed, and the user must simply understand the interface or interaction
between the method and the object. For example, if you can fill your Automobile with
gasoline, it is because you understand the interface between the gas pump nozzle and the
vehicle’s gas tank opening. You don’t need to understand how the pump works mechanically
or where the gas tank is located inside your vehicle. If you can read your speedometer, it does
not matter how the displayed figure is calculated. As a matter of fact, if someone produces a
superior, more accurate speed-determining device and inserts it in your Automobile, you
don’t have to know or care how it operates, as long as your interface remains the same.
The same principles apply to well-constructed classes used in object-oriented programs—
programs that use classes only need to work with interfaces.

Understanding Inheritance and Polymorphism

An important feature of object-oriented program design is inheritance—the ability to create
classes that share the attributes and methods of existing classes, but with more specific
features. For example, Automobile is a class, and all Automob1iTe objects share many traits and
abilities. Convertible is a class that inherits from the Automobile class; a Convertible is a
type of AutomobiTe that has and can do everything a “plain” Automobile does—but with an
added ability to lower its top. (In turn, Automobile inherits from the Vehicle class.)
Convertible is not an object—it is a class. A specific Convertible is an object—for example,
my1967BlueMustangConvertible.

Inheritance helps you understand real-world objects. For example, the first time you
encounter a convertible, you already understand how the ignition, brakes, door locks, and

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

